prateeky2806's picture
Training in progress, step 400
5f3f25c
raw
history blame
12.5 kB
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 0.1292824822236587,
"global_step": 400,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.9529,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7908,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7173,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7776,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6779,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7011,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7156,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7418,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7465,
"step": 90
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7595,
"step": 100
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.6816,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7981,
"step": 120
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.6494,
"step": 130
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7423,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7555,
"step": 150
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5799,
"step": 160
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.699,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7154,
"step": 180
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6096,
"step": 190
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.5713,
"step": 200
},
{
"epoch": 0.06,
"eval_loss": 0.6557502150535583,
"eval_runtime": 92.7109,
"eval_samples_per_second": 10.786,
"eval_steps_per_second": 5.393,
"step": 200
},
{
"epoch": 0.06,
"mmlu_eval_accuracy": 0.47294392264572244,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.3333333333333333,
"mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.5,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.7727272727272727,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8432865626915472,
"step": 200
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6339,
"step": 210
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.701,
"step": 220
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.689,
"step": 230
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6955,
"step": 240
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6124,
"step": 250
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6648,
"step": 260
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7364,
"step": 270
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.558,
"step": 280
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7089,
"step": 290
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.5691,
"step": 300
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7079,
"step": 310
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.6558,
"step": 320
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.5887,
"step": 330
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.704,
"step": 340
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.638,
"step": 350
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.708,
"step": 360
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6203,
"step": 370
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6288,
"step": 380
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.6725,
"step": 390
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.6849,
"step": 400
},
{
"epoch": 0.13,
"eval_loss": 0.6309903860092163,
"eval_runtime": 92.7675,
"eval_samples_per_second": 10.78,
"eval_steps_per_second": 5.39,
"step": 400
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.46759845160702646,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.23076923076923078,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8323084239996289,
"step": 400
}
],
"max_steps": 5000,
"num_train_epochs": 2,
"total_flos": 3.1455516653420544e+16,
"trial_name": null,
"trial_params": null
}