{ "best_metric": null, "best_model_checkpoint": null, "epoch": 0.7110536522301228, "global_step": 2200, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.9529, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7908, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7173, "step": 30 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7776, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6779, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7011, "step": 60 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7156, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7418, "step": 80 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7465, "step": 90 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7595, "step": 100 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.6816, "step": 110 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.7981, "step": 120 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.6494, "step": 130 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7423, "step": 140 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7555, "step": 150 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.5799, "step": 160 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.699, "step": 170 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.7154, "step": 180 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6096, "step": 190 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.5713, "step": 200 }, { "epoch": 0.06, "eval_loss": 0.6557502150535583, "eval_runtime": 92.7109, "eval_samples_per_second": 10.786, "eval_steps_per_second": 5.393, "step": 200 }, { "epoch": 0.06, "mmlu_eval_accuracy": 0.47294392264572244, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.3333333333333333, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.18181818181818182, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.7727272727272727, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8432865626915472, "step": 200 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.6339, "step": 210 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.701, "step": 220 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.689, "step": 230 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6955, "step": 240 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6124, "step": 250 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.6648, "step": 260 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.7364, "step": 270 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.558, "step": 280 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.7089, "step": 290 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.5691, "step": 300 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.7079, "step": 310 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.6558, "step": 320 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.5887, "step": 330 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.704, "step": 340 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.638, "step": 350 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.708, "step": 360 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6203, "step": 370 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6288, "step": 380 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.6725, "step": 390 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.6849, "step": 400 }, { "epoch": 0.13, "eval_loss": 0.6309903860092163, "eval_runtime": 92.7675, "eval_samples_per_second": 10.78, "eval_steps_per_second": 5.39, "step": 400 }, { "epoch": 0.13, "mmlu_eval_accuracy": 0.46759845160702646, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.23076923076923078, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8323084239996289, "step": 400 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.5261, "step": 410 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.6614, "step": 420 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.6213, "step": 430 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.7206, "step": 440 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.6944, "step": 450 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.675, "step": 460 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.5907, "step": 470 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.5778, "step": 480 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.5583, "step": 490 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.7171, "step": 500 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.728, "step": 510 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6037, "step": 520 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6598, "step": 530 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6913, "step": 540 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.6092, "step": 550 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.589, "step": 560 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.5608, "step": 570 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.6251, "step": 580 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.6527, "step": 590 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.6518, "step": 600 }, { "epoch": 0.19, "eval_loss": 0.618711531162262, "eval_runtime": 92.7537, "eval_samples_per_second": 10.781, "eval_steps_per_second": 5.391, "step": 600 }, { "epoch": 0.19, "mmlu_eval_accuracy": 0.4660645174643213, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.46875, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.26, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.8410176051775718, "step": 600 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.6876, "step": 610 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.7174, "step": 620 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.6002, "step": 630 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.7426, "step": 640 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.5213, "step": 650 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.574, "step": 660 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.6669, "step": 670 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.5847, "step": 680 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.7233, "step": 690 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.6199, "step": 700 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.5977, "step": 710 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.6853, "step": 720 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.5777, "step": 730 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.5943, "step": 740 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.6323, "step": 750 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6367, "step": 760 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6367, "step": 770 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.6197, "step": 780 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.5639, "step": 790 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.6281, "step": 800 }, { "epoch": 0.26, "eval_loss": 0.6189825534820557, "eval_runtime": 92.99, "eval_samples_per_second": 10.754, "eval_steps_per_second": 5.377, "step": 800 }, { "epoch": 0.26, "mmlu_eval_accuracy": 0.48167538061853127, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.6363636363636364, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.08333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.3888888888888889, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.36363636363636365, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.27, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9606302572954105, "step": 800 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.637, "step": 810 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.6902, "step": 820 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.5872, "step": 830 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.6115, "step": 840 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.6499, "step": 850 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.5977, "step": 860 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.5873, "step": 870 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.6776, "step": 880 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.6804, "step": 890 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.5914, "step": 900 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.6313, "step": 910 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.5869, "step": 920 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.519, "step": 930 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.4877, "step": 940 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.5931, "step": 950 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.6614, "step": 960 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.6287, "step": 970 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.5139, "step": 980 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.6392, "step": 990 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.7001, "step": 1000 }, { "epoch": 0.32, "eval_loss": 0.5796898007392883, "eval_runtime": 92.7581, "eval_samples_per_second": 10.781, "eval_steps_per_second": 5.39, "step": 1000 }, { "epoch": 0.32, "mmlu_eval_accuracy": 0.47460361123181055, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.7142857142857143, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.53125, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.6363636363636364, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.29, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.5588235294117647, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.3176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.4927536231884058, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.6111111111111112, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.8773848874586836, "step": 1000 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.6671, "step": 1010 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.5942, "step": 1020 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.6236, "step": 1030 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.6162, "step": 1040 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.734, "step": 1050 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.6108, "step": 1060 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.6669, "step": 1070 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.6991, "step": 1080 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.6696, "step": 1090 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.6511, "step": 1100 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.6007, "step": 1110 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.5543, "step": 1120 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.6399, "step": 1130 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.569, "step": 1140 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.6436, "step": 1150 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.4886, "step": 1160 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.5431, "step": 1170 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.5516, "step": 1180 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.5041, "step": 1190 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.6737, "step": 1200 }, { "epoch": 0.39, "eval_loss": 0.5647590160369873, "eval_runtime": 92.7185, "eval_samples_per_second": 10.785, "eval_steps_per_second": 5.393, "step": 1200 }, { "epoch": 0.39, "mmlu_eval_accuracy": 0.47729744414466774, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.36363636363636365, "mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384, "mmlu_eval_accuracy_econometrics": 0.08333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.4375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.53125, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714, "mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744, "mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.8, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.8181818181818182, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.27, "mmlu_eval_accuracy_nutrition": 0.6060606060606061, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.34782608695652173, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.9123951537490825, "step": 1200 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.4926, "step": 1210 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.5814, "step": 1220 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.4985, "step": 1230 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.5966, "step": 1240 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.6493, "step": 1250 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.5811, "step": 1260 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.563, "step": 1270 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.6206, "step": 1280 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5657, "step": 1290 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.6061, "step": 1300 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5776, "step": 1310 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.6702, "step": 1320 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.5688, "step": 1330 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.5237, "step": 1340 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.5883, "step": 1350 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.5206, "step": 1360 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.6948, "step": 1370 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.5656, "step": 1380 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.6026, "step": 1390 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.6319, "step": 1400 }, { "epoch": 0.45, "eval_loss": 0.5552607774734497, "eval_runtime": 92.7391, "eval_samples_per_second": 10.783, "eval_steps_per_second": 5.391, "step": 1400 }, { "epoch": 0.45, "mmlu_eval_accuracy": 0.4812787579159337, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.7272727272727273, "mmlu_eval_accuracy_conceptual_physics": 0.5, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.5, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.3333333333333333, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.8181818181818182, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.4444444444444444, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.8453598066862896, "step": 1400 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.4931, "step": 1410 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.4544, "step": 1420 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.563, "step": 1430 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.4629, "step": 1440 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.4903, "step": 1450 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.5581, "step": 1460 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.6571, "step": 1470 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.5562, "step": 1480 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.4745, "step": 1490 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.6383, "step": 1500 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.6477, "step": 1510 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.5758, "step": 1520 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.5195, "step": 1530 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.5691, "step": 1540 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.5451, "step": 1550 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.5753, "step": 1560 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.5859, "step": 1570 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.6325, "step": 1580 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.7023, "step": 1590 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.5009, "step": 1600 }, { "epoch": 0.52, "eval_loss": 0.5365247130393982, "eval_runtime": 92.8248, "eval_samples_per_second": 10.773, "eval_steps_per_second": 5.386, "step": 1600 }, { "epoch": 0.52, "mmlu_eval_accuracy": 0.4625997452457202, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.08333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.5625, "mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238, "mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907, "mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454, "mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.25, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6162790697674418, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.34705882352941175, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.463768115942029, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8016339474243377, "step": 1600 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.5698, "step": 1610 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.5115, "step": 1620 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.5908, "step": 1630 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.6114, "step": 1640 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.5335, "step": 1650 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.6275, "step": 1660 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.4862, "step": 1670 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.6334, "step": 1680 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.6494, "step": 1690 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.5298, "step": 1700 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.5359, "step": 1710 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.5049, "step": 1720 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.5015, "step": 1730 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.6523, "step": 1740 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.5047, "step": 1750 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.5321, "step": 1760 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.5595, "step": 1770 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.7094, "step": 1780 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.6828, "step": 1790 }, { "epoch": 0.58, "learning_rate": 0.0002, "loss": 0.5355, "step": 1800 }, { "epoch": 0.58, "eval_loss": 0.533126711845398, "eval_runtime": 92.8481, "eval_samples_per_second": 10.77, "eval_steps_per_second": 5.385, "step": 1800 }, { "epoch": 0.58, "mmlu_eval_accuracy": 0.4894584764122198, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.17647058823529413, "mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5833333333333334, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.8181818181818182, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5925925925925926, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.6842105263157895, "mmlu_loss": 0.9346268427978919, "step": 1800 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.4742, "step": 1810 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.5088, "step": 1820 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.459, "step": 1830 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.5195, "step": 1840 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.617, "step": 1850 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.4523, "step": 1860 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.646, "step": 1870 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.4423, "step": 1880 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.5904, "step": 1890 }, { "epoch": 0.61, "learning_rate": 0.0002, "loss": 0.5508, "step": 1900 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.4987, "step": 1910 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.5466, "step": 1920 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.5342, "step": 1930 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.6875, "step": 1940 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.5443, "step": 1950 }, { "epoch": 0.63, "learning_rate": 0.0002, "loss": 0.5367, "step": 1960 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.5529, "step": 1970 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.438, "step": 1980 }, { "epoch": 0.64, "learning_rate": 0.0002, "loss": 0.4422, "step": 1990 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.5624, "step": 2000 }, { "epoch": 0.65, "eval_loss": 0.5018913745880127, "eval_runtime": 92.7994, "eval_samples_per_second": 10.776, "eval_steps_per_second": 5.388, "step": 2000 }, { "epoch": 0.65, "mmlu_eval_accuracy": 0.4873839805836957, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5625, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.45454545454545453, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.5454545454545454, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.08333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.4375, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.7391304347826086, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.8181818181818182, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.5789473684210527, "mmlu_eval_accuracy_moral_scenarios": 0.27, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.4492753623188406, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8898517729972268, "step": 2000 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.4835, "step": 2010 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.5138, "step": 2020 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.4579, "step": 2030 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.6192, "step": 2040 }, { "epoch": 0.66, "learning_rate": 0.0002, "loss": 0.5606, "step": 2050 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.5427, "step": 2060 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.5302, "step": 2070 }, { "epoch": 0.67, "learning_rate": 0.0002, "loss": 0.5107, "step": 2080 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.5849, "step": 2090 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.4736, "step": 2100 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.5274, "step": 2110 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.5004, "step": 2120 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.4559, "step": 2130 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.4954, "step": 2140 }, { "epoch": 0.69, "learning_rate": 0.0002, "loss": 0.5255, "step": 2150 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.3956, "step": 2160 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.446, "step": 2170 }, { "epoch": 0.7, "learning_rate": 0.0002, "loss": 0.4923, "step": 2180 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.5505, "step": 2190 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.6295, "step": 2200 }, { "epoch": 0.71, "eval_loss": 0.49923792481422424, "eval_runtime": 92.7241, "eval_samples_per_second": 10.785, "eval_steps_per_second": 5.392, "step": 2200 }, { "epoch": 0.71, "mmlu_eval_accuracy": 0.46882014178817705, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.4090909090909091, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.08333333333333333, "mmlu_eval_accuracy_electrical_engineering": 0.25, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.75, "mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.38235294117647056, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3225806451612903, "mmlu_eval_accuracy_professional_law": 0.36470588235294116, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.5555555555555556, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8042322283090328, "step": 2200 } ], "max_steps": 5000, "num_train_epochs": 2, "total_flos": 1.803354924659835e+17, "trial_name": null, "trial_params": null }