{ "best_metric": null, "best_model_checkpoint": null, "epoch": 0.06464124111182935, "global_step": 200, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.0, "learning_rate": 0.0002, "loss": 0.9529, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7908, "step": 20 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7173, "step": 30 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.7776, "step": 40 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.6779, "step": 50 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7011, "step": 60 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7156, "step": 70 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7418, "step": 80 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7465, "step": 90 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7595, "step": 100 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.6816, "step": 110 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.7981, "step": 120 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.6494, "step": 130 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7423, "step": 140 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7555, "step": 150 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.5799, "step": 160 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.699, "step": 170 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.7154, "step": 180 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6096, "step": 190 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.5713, "step": 200 }, { "epoch": 0.06, "eval_loss": 0.6557502150535583, "eval_runtime": 92.7109, "eval_samples_per_second": 10.786, "eval_steps_per_second": 5.393, "step": 200 }, { "epoch": 0.06, "mmlu_eval_accuracy": 0.47294392264572244, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.40625, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.3333333333333333, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.5, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.18181818181818182, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6395348837209303, "mmlu_eval_accuracy_moral_disputes": 0.5263157894736842, "mmlu_eval_accuracy_moral_scenarios": 0.25, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.4838709677419355, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.7727272727272727, "mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.8432865626915472, "step": 200 } ], "max_steps": 5000, "num_train_epochs": 2, "total_flos": 1.588839561363456e+16, "trial_name": null, "trial_params": null }