Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,91 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
---
|
| 6 |
+
|
| 7 |
+
# BGE-base-en-v1.5-rag-int8-static
|
| 8 |
+
|
| 9 |
+
A quantized version of [BAAI/BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) quantized with [Intel® Neural Compressor](https://github.com/huggingface/optimum-intel) and compatible with [Optimum-Intel](https://github.com/huggingface/optimum-intel).
|
| 10 |
+
|
| 11 |
+
The model can be used with [Optimum-Intel](https://github.com/huggingface/optimum-intel) API and as a standalone model or as an embedder or ranker module as part of [fastRAG](https://github.com/IntelLabs/fastRAG) RAG pipeline.
|
| 12 |
+
|
| 13 |
+
## Technical details
|
| 14 |
+
|
| 15 |
+
Quantized using post-training static quantization.
|
| 16 |
+
|
| 17 |
+
| | |
|
| 18 |
+
|---|:---:|
|
| 19 |
+
| Calibration set | [qasper](https://huggingface.co/datasets/allenai/qasper) (with 80 random samples)" |
|
| 20 |
+
| Quantization tool | [Optimum-Intel](https://github.com/huggingface/optimum-intel) |
|
| 21 |
+
| Backend | `IPEX` |
|
| 22 |
+
| Original model | [BAAI/BGE-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) |
|
| 23 |
+
|
| 24 |
+
Instructions how to reproduce the quantized model can be found [here](https://github.com/IntelLabs/fastRAG/tree/main/scripts/optimizations/embedders).
|
| 25 |
+
|
| 26 |
+
## Evaluation - MTEB
|
| 27 |
+
|
| 28 |
+
Model performance on the [Massive Text Embedding Benchmark (MTEB)](https://huggingface.co/spaces/mteb/leaderboard) *retrieval* and *reranking* tasks.
|
| 29 |
+
|
| 30 |
+
| | `INT8` | `FP32` | % diff |
|
| 31 |
+
|---|:---:|:---:|:---:|
|
| 32 |
+
| Reranking | 0.5886 | 0.5886 | 0.0% |
|
| 33 |
+
| Retrieval | 0.5242 | 0.5325 | -1.55% |
|
| 34 |
+
|
| 35 |
+
## Usage
|
| 36 |
+
|
| 37 |
+
### Using with Optimum-intel
|
| 38 |
+
|
| 39 |
+
See [Optimum-intel](https://github.com/huggingface/optimum-intel) installation page for instructions how to install. Or run:
|
| 40 |
+
|
| 41 |
+
``` sh
|
| 42 |
+
pip install -U optimum[neural-compressor, ipex] intel-extension-for-transformers
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
Loading a model:
|
| 46 |
+
|
| 47 |
+
``` python
|
| 48 |
+
from optimum.intel import IPEXModel
|
| 49 |
+
|
| 50 |
+
model = IPEXModel.from_pretrained("Intel/bge-base-en-v1.5-rag-int8-static")
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
Running inference:
|
| 54 |
+
|
| 55 |
+
``` python
|
| 56 |
+
from transformers import AutoTokenizer
|
| 57 |
+
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained("Intel/bge-base-en-v1.5-rag-int8-static")
|
| 59 |
+
|
| 60 |
+
inputs = tokenizer(sentences, return_tensors='pt')
|
| 61 |
+
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
# get the vector of [CLS]
|
| 65 |
+
embedded = model_output[0][:, 0]
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
### Using with a fastRAG RAG pipeline
|
| 69 |
+
|
| 70 |
+
Get started with installing [fastRAG](https://github.com/IntelLabs/fastRAG) as instructed [here](https://github.com/IntelLabs/fastRAG).
|
| 71 |
+
|
| 72 |
+
Below is an example for loading the model into a ranker node that embeds and re-ranks all the documents it gets in the node input of a pipeline.
|
| 73 |
+
|
| 74 |
+
``` python
|
| 75 |
+
from fastrag.rankers import QuantizedBiEncoderRanker
|
| 76 |
+
|
| 77 |
+
ranker = QuantizedBiEncoderRanker("Intel/bge-base-en-v1.5-rag-int8-static")
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
and plugging it into a pipeline
|
| 81 |
+
|
| 82 |
+
``` python
|
| 83 |
+
|
| 84 |
+
from haystack import Pipeline
|
| 85 |
+
|
| 86 |
+
p = Pipeline()
|
| 87 |
+
p.add_node(component=retriever, name="retriever", inputs=["Query"])
|
| 88 |
+
p.add_node(component=ranker, name="ranker", inputs=["retriever"])
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
See a more complete example notebook [here](https://github.com/IntelLabs/fastRAG/blob/main/examples/optimized-embeddings.ipynb).
|