nielsr HF Staff commited on
Commit
8e1fa83
·
verified ·
1 Parent(s): ce8a342

Improve model card: Add pipeline tag, paper link, abstract, and sample usage

Browse files

This PR enhances the model card for InternVLA-M1 by:

- Updating the `license` to `mit` based on the explicit badge in the GitHub repository.
- Adding the `pipeline_tag: robotics` to the metadata, ensuring the model appears in the [robotics pipeline filter](https://huggingface.co/models?pipeline_tag=robotics) on the Hugging Face Hub.
- Including a direct link to the official Hugging Face paper page, [InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy](https://huggingface.co/papers/2510.13778), in the model description.
- Adding the paper's abstract as a dedicated section for a quick overview.
- Including two detailed Python code snippets for "InternVLA-M1 Chat Demo (image Q&A / Spatial Grounding)" and "InternVLA-M1 Action Prediction Demo (two views)", extracted directly from the GitHub repository's `Quick Interactive M1 Demo` section, to help users easily get started with the model.
- Updating the `Citation` section with the more complete BibTeX entry from the GitHub README.

Please review and merge this PR.

Files changed (1) hide show
  1. README.md +88 -10
README.md CHANGED
@@ -1,31 +1,109 @@
1
  ---
2
- license: cc-by-nc-sa-4.0
3
  base_model:
4
  - Qwen/Qwen2.5-VL-3B-Instruct
 
 
 
5
  tags:
6
- - robotics
7
  - vision-language-action-model
8
  - vision-language-model
9
- library_name: transformers
10
  ---
 
11
  # Model Card for InternVLA-M1
12
 
13
  ## Description:
14
- **InternVLA-M1** is an open-source, end-to-end **vision–language–action (VLA) framework** for building and researching generalist robot policies. The checkpoints in this repository were pretrained on the system2 dataset.
15
  - 🌐 Homepage: [InternVLA-M1 Project Page](https://internrobotics.github.io/internvla-m1.github.io/)
16
  - 💻 Codebase: [InternVLA-M1 GitHub Repo](https://github.com/InternRobotics/InternVLA-M1)
17
 
18
 
19
  ![image/png](https://github.com/InternRobotics/InternVLA-M1/raw/InternVLA-M1/assets/teaser.png)
20
 
 
 
21
 
 
22
 
23
- ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ```
25
- @misc{internvla2024,
26
- title = {InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy},
27
- author = {InternVLA-M1 Contributors},
28
- year = {2025},
29
- booktitle={arXiv},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  }
31
  ```
 
1
  ---
 
2
  base_model:
3
  - Qwen/Qwen2.5-VL-3B-Instruct
4
+ library_name: transformers
5
+ license: mit
6
+ pipeline_tag: robotics
7
  tags:
 
8
  - vision-language-action-model
9
  - vision-language-model
 
10
  ---
11
+
12
  # Model Card for InternVLA-M1
13
 
14
  ## Description:
15
+ **InternVLA-M1** is an open-source, end-to-end **vision–language–action (VLA) framework** for building and researching generalist robot policies, as described in the paper [InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy](https://huggingface.co/papers/2510.13778). The checkpoints in this repository were pretrained on the system2 dataset.
16
  - 🌐 Homepage: [InternVLA-M1 Project Page](https://internrobotics.github.io/internvla-m1.github.io/)
17
  - 💻 Codebase: [InternVLA-M1 GitHub Repo](https://github.com/InternRobotics/InternVLA-M1)
18
 
19
 
20
  ![image/png](https://github.com/InternRobotics/InternVLA-M1/raw/InternVLA-M1/assets/teaser.png)
21
 
22
+ ## Abstract
23
+ We introduce InternVLA-M1, a unified framework for spatial grounding and robot control that advances instruction-following robots toward scalable, general-purpose intelligence. Its core idea is spatially guided vision-language-action training, where spatial grounding serves as the critical link between instructions and robot actions. InternVLA-M1 employs a two-stage pipeline: (i) spatial grounding pre-training on over 2.3M spatial reasoning data to determine ``where to act'' by aligning instructions with visual, embodiment-agnostic positions, and (ii) spatially guided action post-training to decide ``how to act'' by generating embodiment-aware actions through plug-and-play spatial prompting. This spatially guided training recipe yields consistent gains: InternVLA-M1 outperforms its variant without spatial guidance by +14.6% on SimplerEnv Google Robot, +17% on WidowX, and +4.3% on LIBERO Franka, while demonstrating stronger spatial reasoning capability in box, point, and trace prediction. To further scale instruction following, we built a simulation engine to collect 244K generalizable pick-and-place episodes, enabling a 6.2% average improvement across 200 tasks and 3K+ objects. In real-world clustered pick-and-place, InternVLA-M1 improved by 7.3%, and with synthetic co-training, achieved +20.6% on unseen objects and novel configurations. Moreover, in long-horizon reasoning-intensive scenarios, it surpassed existing works by over 10%. These results highlight spatially guided training as a unifying principle for scalable and resilient generalist robots. Code and models are available at this https URL .
24
 
25
+ ## Sample Usage
26
 
27
+ Below are two examples demonstrating how to use InternVLA-M1 for chat (image Q&A / Spatial Grounding) and action prediction.
28
+
29
+ <details open>
30
+ <summary><b>InternVLA-M1 Chat Demo (image Q&A / Spatial Grounding)</b></summary>
31
+
32
+ ```python
33
+ from InternVLA.model.framework.M1 import InternVLA_M1
34
+ from PIL import Image
35
+ import requests
36
+ from io import BytesIO
37
+ import torch
38
+
39
+ def load_image_from_url(url: str) -> Image.Image:
40
+ resp = requests.get(url, timeout=15)
41
+ resp.raise_for_status()
42
+ img = Image.open(BytesIO(resp.content)).convert("RGB")
43
+ return img
44
+
45
+ saved_model_path = "/PATH/checkpoints/steps_50000_pytorch_model.pt" # Update this path to your downloaded model
46
+ internVLA_M1 = InternVLA_M1.from_pretrained(saved_model_path)
47
+
48
+ # Use the raw image link for direct download
49
+ image_url = "https://raw.githubusercontent.com/InternRobotics/InternVLA-M1/InternVLA-M1/assets/table.jpeg"
50
+ image = load_image_from_url(image_url)
51
+ question = "Give the bounding box for the apple."
52
+ response = internVLA_M1.chat_with_M1(image, question)
53
+ print(response)
54
  ```
55
+ </details>
56
+
57
+ <details>
58
+ <summary><b>InternVLA-M1 Action Prediction Demo (two views)</b></summary>
59
+
60
+ ```python
61
+ from InternVLA.model.framework.M1 import InternVLA_M1
62
+ from PIL import Image
63
+ import requests
64
+ from io import BytesIO
65
+ import torch
66
+
67
+ def load_image_from_url(url: str) -> Image.Image:
68
+ resp = requests.get(url, timeout=15)
69
+ resp.raise_for_status()
70
+ img = Image.open(BytesIO(resp.content)).convert("RGB")
71
+ return img
72
+
73
+ saved_model_path = "/PATH/checkpoints/steps_50000_pytorch_model.pt" # Update this path to your downloaded model
74
+ internVLA_M1 = InternVLA_M1.from_pretrained(saved_model_path)
75
+
76
+ image_url = "https://raw.githubusercontent.com/InternRobotics/InternVLA-M1/InternVLA-M1/assets/table.jpeg"
77
+ view1 = load_image_from_url(image_url)
78
+ view2 = view1.copy()
79
+
80
+ # Construct input: batch size = 1, two views
81
+ batch_images = [[view1, view2]] # List[List[PIL.Image]]
82
+ instructions = ["Pick up the apple and place it on the plate."]
83
+
84
+ if torch.cuda.is_available():
85
+ internVLA_M1 = internVLA_M1.to("cuda")
86
+
87
+ pred = internVLA_M1.predict_action(
88
+ batch_images=batch_images,
89
+ instructions=instructions,
90
+ cfg_scale=1.5,
91
+ use_ddim=True,
92
+ num_ddim_steps=10,
93
+ )
94
+ normalized_actions = pred["normalized_actions"] # [B, T, action_dim]
95
+ print(normalized_actions.shape, type(normalized_actions))
96
+ ```
97
+ </details>
98
+
99
+ ## Citation
100
+ If you find this useful in your research, please consider citing:
101
+
102
+ ```bibtex
103
+ @article{internvlam1,
104
+ title = {InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy},
105
+ author = {InternVLA-M1 Contributors},
106
+ journal = {arXiv preprint arXiv:2510.13778},
107
+ year = {2025}
108
  }
109
  ```