JohanHeinsen commited on
Commit
706f3ac
·
verified ·
1 Parent(s): fe02701

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:20502
8
+ - loss:CosineSimilarityLoss
9
+ base_model: CALDISS-AAU/DA-BERT_Old_News_V1
10
+ widget:
11
+ - source_sentence: Spurgte man ham, hvorledes dette skulde forstaaes, svarede han"Naar
12
+ Varepriserne vare faldne, gjorde jeg Jndkjøb og betalte altid lidt mere end Andre,
13
+ saa enhver gjerne vilde sælge til mig; steeg Varerne, solgte jeg igjen lidt billigere
14
+ end Andre, og fik derved i en Hast mit Forraad udsolgt, inden Priserne faldt igien."
15
+ sentences:
16
+ - Paa Pregels venstre Side derimod stiger Vandet saaledes, at der i Landsbyen Mulden
17
+ er skeet betydelig Skade ved Oversvømmelse af den der værende lille Flod.
18
+ - Fra Aamodts Præstegield i Østerdalen skrives følgende under 17de Marts, Sidstafvigte
19
+ Onsdag Aften, imellem Kl. 7 og 8, blev her begaaet et skrækkeligt Mord paa 2de
20
+ svenske Handelskarle.
21
+ - Gaardens Bygninger, som bestaaeraf 11 Fag Grundmuur til Gaden med Qvist over,
22
+ samt 21 Fag Muur- og Bindingsværk til Gaarden, og som alt er ny opbygget for 11
23
+ Aar siden, ere i Kiøbstædernes Brandasseurance forsikkrede for den Summa 6220
24
+ Rbdlr.
25
+ - source_sentence: Danske Bancosedler 36 Procent slett, end Species, 80 Rdl.
26
+ sentences:
27
+ - Species, dansk Courant Rdl.
28
+ - 16 Rbdlr.
29
+ - Medlidenhed, maatte vriste disse elendige Medbrødre ud af Egennyttens og Slendrians
30
+ aldrig tillukte Svælg.
31
+ - source_sentence: '- Fra Peru meldes, at General Santa Crux var den 25de Marts ankommen
32
+ til Ecuador; hans Magt maae altsaa være aldeles tilintetgjort.'
33
+ sentences:
34
+ - Holland.
35
+ - Udi afvigte Aar 1818 ere i Budolphi Sogn Ægtevid27 Par; fødte af Mandkiøn 51 og
36
+ af Qvindekiøn 61, tilsammen af begge Kiøn 112, deriblandt et Par Tvillinger og
37
+ 11 Uægte.
38
+ - For Honoratiores og simplere Reisende findes her 6 Værelser med 1 Seng i hver,
39
+ i hvilken i Nødsfald og efter Overeenskomst kunde ligge 2 Personer.
40
+ - source_sentence: '- Jndbrud og Kirkeran begaaes i denne Tid i Nærheden af Hovedstaden;
41
+ 2 Kieler have havt saadan Skjebne; den ene mistede alle sine Solvkar og Kostbarheder
42
+ fra Oldtiden af.'
43
+ sentences:
44
+ - Sambreog Maatzarmeen maae være i en elændig Tilstand.
45
+ - 4) Hvad der i Reglementets 5 7 er bestemt i Henseende til, at Kaperie ei maae
46
+ drives under de svenske Kyster ved Øresund, bortfalder.
47
+ - Man formoder af Dragten at Ransmændene vare Søfolk.
48
+ - source_sentence: Hos Undertegnede paa Hjørnet af Mellemkakken, haves om ønskes til
49
+ Leie strax eller til 1ste November 2de Værelser, Kjøkken med Kjælder, samt Loftrum
50
+ og et Overkammer, Thisted den 4de Juli 1845. Lars Chr.
51
+ sentences:
52
+ - Cours.
53
+ - Weie.
54
+ - Rusland.
55
+ pipeline_tag: sentence-similarity
56
+ library_name: sentence-transformers
57
+ ---
58
+
59
+ # SentenceTransformer based on CALDISS-AAU/DA-BERT_Old_News_V1
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [CALDISS-AAU/DA-BERT_Old_News_V1](https://huggingface.co/CALDISS-AAU/DA-BERT_Old_News_V1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [CALDISS-AAU/DA-BERT_Old_News_V1](https://huggingface.co/CALDISS-AAU/DA-BERT_Old_News_V1) <!-- at revision bc4fe96db0c5398c708397ccee7340a71d47fa2c -->
68
+ - **Maximum Sequence Length:** 512 tokens
69
+ - **Output Dimensionality:** 768 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ )
88
+ ```
89
+
90
+ ## Usage
91
+
92
+ ### Direct Usage (Sentence Transformers)
93
+
94
+ First install the Sentence Transformers library:
95
+
96
+ ```bash
97
+ pip install -U sentence-transformers
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+ ```python
102
+ from sentence_transformers import SentenceTransformer
103
+
104
+ # Download from the 🤗 Hub
105
+ model = SentenceTransformer("JohanHeinsen/Old_News_Segmentation_SBERT_V0.1")
106
+ # Run inference
107
+ sentences = [
108
+ 'Hos Undertegnede paa Hjørnet af Mellemkakken, haves om ønskes til Leie strax eller til 1ste November 2de Værelser, Kjøkken med Kjælder, samt Loftrum og et Overkammer, Thisted den 4de Juli 1845. Lars Chr.',
109
+ 'Weie.',
110
+ 'Rusland.',
111
+ ]
112
+ embeddings = model.encode(sentences)
113
+ print(embeddings.shape)
114
+ # [3, 768]
115
+
116
+ # Get the similarity scores for the embeddings
117
+ similarities = model.similarity(embeddings, embeddings)
118
+ print(similarities.shape)
119
+ # [3, 3]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ <!--
147
+ ## Bias, Risks and Limitations
148
+
149
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
150
+ -->
151
+
152
+ <!--
153
+ ### Recommendations
154
+
155
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
156
+ -->
157
+
158
+ ## Training Details
159
+
160
+ ### Training Dataset
161
+
162
+ #### Unnamed Dataset
163
+
164
+ * Size: 20,502 training samples
165
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
166
+ * Approximate statistics based on the first 1000 samples:
167
+ | | sentence_0 | sentence_1 | label |
168
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
169
+ | type | string | string | float |
170
+ | details | <ul><li>min: 4 tokens</li><li>mean: 27.64 tokens</li><li>max: 314 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.19 tokens</li><li>max: 218 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
171
+ * Samples:
172
+ | sentence_0 | sentence_1 | label |
173
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
174
+ | <code>Slagelse den 31te Januar 1818. Vastholm.</code> | <code>Sølv til Amtets Fattigkasse forbudt, efter privat Overeenskomst med vedkommende Ægtpligtige at modtage Vederlag, enten i Penge, eller andre Præstationer, istedet for Befordring en naturg.</code> | <code>0.0</code> |
175
+ | <code>– Ved Opholdet i Louisenlund har Hs. Majestæt Kongen den 10de dennes allernaadigst egenhændigen overlevet Storcommandeurkorset af Dannebrogen til Allerhøistsammes Svigerfader Hs. Durchl.</code> | <code>Landgreve Carl til Churbessen, Generalfeldtmarskal Stadtholder i Hertugdømmene Slesvig og Holsteen, Ridder af Elefanten og Dannebrogsmand.</code> | <code>1.0</code> |
176
+ | <code>, samt Eieren af Riignorgaard i Amtet Gottorf, H. Petersen, udnævnte til Landmaalere.</code> | <code>Under Finants-Collegiet: Til Kasserer for de specielle Oppebørseler i Hertugdommene, har Hs. Majestæt, under 26de Juli dette Aar, udnævnt C. Schleth, Kasserer, Bogholder og Regnskabsfører ved Travensalzer Salme; forhenværende Revisor ved den grønlandske Handel, N. Døller, udnævnt til General-Revisor ved Lottoet i Kjøbenhavn.</code> | <code>0.0</code> |
177
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
178
+ ```json
179
+ {
180
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
181
+ }
182
+ ```
183
+
184
+ ### Training Hyperparameters
185
+ #### Non-Default Hyperparameters
186
+
187
+ - `per_device_train_batch_size`: 16
188
+ - `per_device_eval_batch_size`: 16
189
+ - `num_train_epochs`: 2
190
+ - `multi_dataset_batch_sampler`: round_robin
191
+
192
+ #### All Hyperparameters
193
+ <details><summary>Click to expand</summary>
194
+
195
+ - `overwrite_output_dir`: False
196
+ - `do_predict`: False
197
+ - `eval_strategy`: no
198
+ - `prediction_loss_only`: True
199
+ - `per_device_train_batch_size`: 16
200
+ - `per_device_eval_batch_size`: 16
201
+ - `per_gpu_train_batch_size`: None
202
+ - `per_gpu_eval_batch_size`: None
203
+ - `gradient_accumulation_steps`: 1
204
+ - `eval_accumulation_steps`: None
205
+ - `torch_empty_cache_steps`: None
206
+ - `learning_rate`: 5e-05
207
+ - `weight_decay`: 0.0
208
+ - `adam_beta1`: 0.9
209
+ - `adam_beta2`: 0.999
210
+ - `adam_epsilon`: 1e-08
211
+ - `max_grad_norm`: 1
212
+ - `num_train_epochs`: 2
213
+ - `max_steps`: -1
214
+ - `lr_scheduler_type`: linear
215
+ - `lr_scheduler_kwargs`: {}
216
+ - `warmup_ratio`: 0.0
217
+ - `warmup_steps`: 0
218
+ - `log_level`: passive
219
+ - `log_level_replica`: warning
220
+ - `log_on_each_node`: True
221
+ - `logging_nan_inf_filter`: True
222
+ - `save_safetensors`: True
223
+ - `save_on_each_node`: False
224
+ - `save_only_model`: False
225
+ - `restore_callback_states_from_checkpoint`: False
226
+ - `no_cuda`: False
227
+ - `use_cpu`: False
228
+ - `use_mps_device`: False
229
+ - `seed`: 42
230
+ - `data_seed`: None
231
+ - `jit_mode_eval`: False
232
+ - `use_ipex`: False
233
+ - `bf16`: False
234
+ - `fp16`: False
235
+ - `fp16_opt_level`: O1
236
+ - `half_precision_backend`: auto
237
+ - `bf16_full_eval`: False
238
+ - `fp16_full_eval`: False
239
+ - `tf32`: None
240
+ - `local_rank`: 0
241
+ - `ddp_backend`: None
242
+ - `tpu_num_cores`: None
243
+ - `tpu_metrics_debug`: False
244
+ - `debug`: []
245
+ - `dataloader_drop_last`: False
246
+ - `dataloader_num_workers`: 0
247
+ - `dataloader_prefetch_factor`: None
248
+ - `past_index`: -1
249
+ - `disable_tqdm`: False
250
+ - `remove_unused_columns`: True
251
+ - `label_names`: None
252
+ - `load_best_model_at_end`: False
253
+ - `ignore_data_skip`: False
254
+ - `fsdp`: []
255
+ - `fsdp_min_num_params`: 0
256
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
257
+ - `tp_size`: 0
258
+ - `fsdp_transformer_layer_cls_to_wrap`: None
259
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
260
+ - `deepspeed`: None
261
+ - `label_smoothing_factor`: 0.0
262
+ - `optim`: adamw_torch
263
+ - `optim_args`: None
264
+ - `adafactor`: False
265
+ - `group_by_length`: False
266
+ - `length_column_name`: length
267
+ - `ddp_find_unused_parameters`: None
268
+ - `ddp_bucket_cap_mb`: None
269
+ - `ddp_broadcast_buffers`: False
270
+ - `dataloader_pin_memory`: True
271
+ - `dataloader_persistent_workers`: False
272
+ - `skip_memory_metrics`: True
273
+ - `use_legacy_prediction_loop`: False
274
+ - `push_to_hub`: False
275
+ - `resume_from_checkpoint`: None
276
+ - `hub_model_id`: None
277
+ - `hub_strategy`: every_save
278
+ - `hub_private_repo`: None
279
+ - `hub_always_push`: False
280
+ - `gradient_checkpointing`: False
281
+ - `gradient_checkpointing_kwargs`: None
282
+ - `include_inputs_for_metrics`: False
283
+ - `include_for_metrics`: []
284
+ - `eval_do_concat_batches`: True
285
+ - `fp16_backend`: auto
286
+ - `push_to_hub_model_id`: None
287
+ - `push_to_hub_organization`: None
288
+ - `mp_parameters`:
289
+ - `auto_find_batch_size`: False
290
+ - `full_determinism`: False
291
+ - `torchdynamo`: None
292
+ - `ray_scope`: last
293
+ - `ddp_timeout`: 1800
294
+ - `torch_compile`: False
295
+ - `torch_compile_backend`: None
296
+ - `torch_compile_mode`: None
297
+ - `include_tokens_per_second`: False
298
+ - `include_num_input_tokens_seen`: False
299
+ - `neftune_noise_alpha`: None
300
+ - `optim_target_modules`: None
301
+ - `batch_eval_metrics`: False
302
+ - `eval_on_start`: False
303
+ - `use_liger_kernel`: False
304
+ - `eval_use_gather_object`: False
305
+ - `average_tokens_across_devices`: False
306
+ - `prompts`: None
307
+ - `batch_sampler`: batch_sampler
308
+ - `multi_dataset_batch_sampler`: round_robin
309
+
310
+ </details>
311
+
312
+ ### Training Logs
313
+ | Epoch | Step | Training Loss |
314
+ |:------:|:----:|:-------------:|
315
+ | 0.3900 | 500 | 0.1395 |
316
+ | 0.7800 | 1000 | 0.1189 |
317
+ | 1.1700 | 1500 | 0.1008 |
318
+ | 1.5601 | 2000 | 0.0785 |
319
+ | 1.9501 | 2500 | 0.0803 |
320
+
321
+
322
+ ### Framework Versions
323
+ - Python: 3.11.12
324
+ - Sentence Transformers: 4.1.0
325
+ - Transformers: 4.51.3
326
+ - PyTorch: 2.7.0
327
+ - Accelerate: 1.6.0
328
+ - Datasets: 2.19.2
329
+ - Tokenizers: 0.21.1
330
+
331
+ ## Citation
332
+
333
+ ### BibTeX
334
+
335
+ #### Sentence Transformers
336
+ ```bibtex
337
+ @inproceedings{reimers-2019-sentence-bert,
338
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
339
+ author = "Reimers, Nils and Gurevych, Iryna",
340
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
341
+ month = "11",
342
+ year = "2019",
343
+ publisher = "Association for Computational Linguistics",
344
+ url = "https://arxiv.org/abs/1908.10084",
345
+ }
346
+ ```
347
+
348
+ <!--
349
+ ## Glossary
350
+
351
+ *Clearly define terms in order to be accessible across audiences.*
352
+ -->
353
+
354
+ <!--
355
+ ## Model Card Authors
356
+
357
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
358
+ -->
359
+
360
+ <!--
361
+ ## Model Card Contact
362
+
363
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
364
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.51.3",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.7.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49e6c8d69b2a0826a0b0a3b914b42cb0fea7f116d44bec20452ef01d5509310e
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff