Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +364 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:20502
|
| 8 |
+
- loss:CosineSimilarityLoss
|
| 9 |
+
base_model: CALDISS-AAU/DA-BERT_Old_News_V1
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: Spurgte man ham, hvorledes dette skulde forstaaes, svarede han"Naar
|
| 12 |
+
Varepriserne vare faldne, gjorde jeg Jndkjøb og betalte altid lidt mere end Andre,
|
| 13 |
+
saa enhver gjerne vilde sælge til mig; steeg Varerne, solgte jeg igjen lidt billigere
|
| 14 |
+
end Andre, og fik derved i en Hast mit Forraad udsolgt, inden Priserne faldt igien."
|
| 15 |
+
sentences:
|
| 16 |
+
- Paa Pregels venstre Side derimod stiger Vandet saaledes, at der i Landsbyen Mulden
|
| 17 |
+
er skeet betydelig Skade ved Oversvømmelse af den der værende lille Flod.
|
| 18 |
+
- Fra Aamodts Præstegield i Østerdalen skrives følgende under 17de Marts, Sidstafvigte
|
| 19 |
+
Onsdag Aften, imellem Kl. 7 og 8, blev her begaaet et skrækkeligt Mord paa 2de
|
| 20 |
+
svenske Handelskarle.
|
| 21 |
+
- Gaardens Bygninger, som bestaaeraf 11 Fag Grundmuur til Gaden med Qvist over,
|
| 22 |
+
samt 21 Fag Muur- og Bindingsværk til Gaarden, og som alt er ny opbygget for 11
|
| 23 |
+
Aar siden, ere i Kiøbstædernes Brandasseurance forsikkrede for den Summa 6220
|
| 24 |
+
Rbdlr.
|
| 25 |
+
- source_sentence: Danske Bancosedler 36 Procent slett, end Species, 80 Rdl.
|
| 26 |
+
sentences:
|
| 27 |
+
- Species, dansk Courant Rdl.
|
| 28 |
+
- 16 Rbdlr.
|
| 29 |
+
- Medlidenhed, maatte vriste disse elendige Medbrødre ud af Egennyttens og Slendrians
|
| 30 |
+
aldrig tillukte Svælg.
|
| 31 |
+
- source_sentence: '- Fra Peru meldes, at General Santa Crux var den 25de Marts ankommen
|
| 32 |
+
til Ecuador; hans Magt maae altsaa være aldeles tilintetgjort.'
|
| 33 |
+
sentences:
|
| 34 |
+
- Holland.
|
| 35 |
+
- Udi afvigte Aar 1818 ere i Budolphi Sogn Ægtevid27 Par; fødte af Mandkiøn 51 og
|
| 36 |
+
af Qvindekiøn 61, tilsammen af begge Kiøn 112, deriblandt et Par Tvillinger og
|
| 37 |
+
11 Uægte.
|
| 38 |
+
- For Honoratiores og simplere Reisende findes her 6 Værelser med 1 Seng i hver,
|
| 39 |
+
i hvilken i Nødsfald og efter Overeenskomst kunde ligge 2 Personer.
|
| 40 |
+
- source_sentence: '- Jndbrud og Kirkeran begaaes i denne Tid i Nærheden af Hovedstaden;
|
| 41 |
+
2 Kieler have havt saadan Skjebne; den ene mistede alle sine Solvkar og Kostbarheder
|
| 42 |
+
fra Oldtiden af.'
|
| 43 |
+
sentences:
|
| 44 |
+
- Sambreog Maatzarmeen maae være i en elændig Tilstand.
|
| 45 |
+
- 4) Hvad der i Reglementets 5 7 er bestemt i Henseende til, at Kaperie ei maae
|
| 46 |
+
drives under de svenske Kyster ved Øresund, bortfalder.
|
| 47 |
+
- Man formoder af Dragten at Ransmændene vare Søfolk.
|
| 48 |
+
- source_sentence: Hos Undertegnede paa Hjørnet af Mellemkakken, haves om ønskes til
|
| 49 |
+
Leie strax eller til 1ste November 2de Værelser, Kjøkken med Kjælder, samt Loftrum
|
| 50 |
+
og et Overkammer, Thisted den 4de Juli 1845. Lars Chr.
|
| 51 |
+
sentences:
|
| 52 |
+
- Cours.
|
| 53 |
+
- Weie.
|
| 54 |
+
- Rusland.
|
| 55 |
+
pipeline_tag: sentence-similarity
|
| 56 |
+
library_name: sentence-transformers
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
# SentenceTransformer based on CALDISS-AAU/DA-BERT_Old_News_V1
|
| 60 |
+
|
| 61 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [CALDISS-AAU/DA-BERT_Old_News_V1](https://huggingface.co/CALDISS-AAU/DA-BERT_Old_News_V1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 62 |
+
|
| 63 |
+
## Model Details
|
| 64 |
+
|
| 65 |
+
### Model Description
|
| 66 |
+
- **Model Type:** Sentence Transformer
|
| 67 |
+
- **Base model:** [CALDISS-AAU/DA-BERT_Old_News_V1](https://huggingface.co/CALDISS-AAU/DA-BERT_Old_News_V1) <!-- at revision bc4fe96db0c5398c708397ccee7340a71d47fa2c -->
|
| 68 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 69 |
+
- **Output Dimensionality:** 768 dimensions
|
| 70 |
+
- **Similarity Function:** Cosine Similarity
|
| 71 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 72 |
+
<!-- - **Language:** Unknown -->
|
| 73 |
+
<!-- - **License:** Unknown -->
|
| 74 |
+
|
| 75 |
+
### Model Sources
|
| 76 |
+
|
| 77 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 78 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 79 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 80 |
+
|
| 81 |
+
### Full Model Architecture
|
| 82 |
+
|
| 83 |
+
```
|
| 84 |
+
SentenceTransformer(
|
| 85 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 86 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 87 |
+
)
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
## Usage
|
| 91 |
+
|
| 92 |
+
### Direct Usage (Sentence Transformers)
|
| 93 |
+
|
| 94 |
+
First install the Sentence Transformers library:
|
| 95 |
+
|
| 96 |
+
```bash
|
| 97 |
+
pip install -U sentence-transformers
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
Then you can load this model and run inference.
|
| 101 |
+
```python
|
| 102 |
+
from sentence_transformers import SentenceTransformer
|
| 103 |
+
|
| 104 |
+
# Download from the 🤗 Hub
|
| 105 |
+
model = SentenceTransformer("JohanHeinsen/Old_News_Segmentation_SBERT_V0.1")
|
| 106 |
+
# Run inference
|
| 107 |
+
sentences = [
|
| 108 |
+
'Hos Undertegnede paa Hjørnet af Mellemkakken, haves om ønskes til Leie strax eller til 1ste November 2de Værelser, Kjøkken med Kjælder, samt Loftrum og et Overkammer, Thisted den 4de Juli 1845. Lars Chr.',
|
| 109 |
+
'Weie.',
|
| 110 |
+
'Rusland.',
|
| 111 |
+
]
|
| 112 |
+
embeddings = model.encode(sentences)
|
| 113 |
+
print(embeddings.shape)
|
| 114 |
+
# [3, 768]
|
| 115 |
+
|
| 116 |
+
# Get the similarity scores for the embeddings
|
| 117 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 118 |
+
print(similarities.shape)
|
| 119 |
+
# [3, 3]
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
<!--
|
| 123 |
+
### Direct Usage (Transformers)
|
| 124 |
+
|
| 125 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 126 |
+
|
| 127 |
+
</details>
|
| 128 |
+
-->
|
| 129 |
+
|
| 130 |
+
<!--
|
| 131 |
+
### Downstream Usage (Sentence Transformers)
|
| 132 |
+
|
| 133 |
+
You can finetune this model on your own dataset.
|
| 134 |
+
|
| 135 |
+
<details><summary>Click to expand</summary>
|
| 136 |
+
|
| 137 |
+
</details>
|
| 138 |
+
-->
|
| 139 |
+
|
| 140 |
+
<!--
|
| 141 |
+
### Out-of-Scope Use
|
| 142 |
+
|
| 143 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 144 |
+
-->
|
| 145 |
+
|
| 146 |
+
<!--
|
| 147 |
+
## Bias, Risks and Limitations
|
| 148 |
+
|
| 149 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 150 |
+
-->
|
| 151 |
+
|
| 152 |
+
<!--
|
| 153 |
+
### Recommendations
|
| 154 |
+
|
| 155 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 156 |
+
-->
|
| 157 |
+
|
| 158 |
+
## Training Details
|
| 159 |
+
|
| 160 |
+
### Training Dataset
|
| 161 |
+
|
| 162 |
+
#### Unnamed Dataset
|
| 163 |
+
|
| 164 |
+
* Size: 20,502 training samples
|
| 165 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
| 166 |
+
* Approximate statistics based on the first 1000 samples:
|
| 167 |
+
| | sentence_0 | sentence_1 | label |
|
| 168 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 169 |
+
| type | string | string | float |
|
| 170 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 27.64 tokens</li><li>max: 314 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.19 tokens</li><li>max: 218 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
|
| 171 |
+
* Samples:
|
| 172 |
+
| sentence_0 | sentence_1 | label |
|
| 173 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
| 174 |
+
| <code>Slagelse den 31te Januar 1818. Vastholm.</code> | <code>Sølv til Amtets Fattigkasse forbudt, efter privat Overeenskomst med vedkommende Ægtpligtige at modtage Vederlag, enten i Penge, eller andre Præstationer, istedet for Befordring en naturg.</code> | <code>0.0</code> |
|
| 175 |
+
| <code>– Ved Opholdet i Louisenlund har Hs. Majestæt Kongen den 10de dennes allernaadigst egenhændigen overlevet Storcommandeurkorset af Dannebrogen til Allerhøistsammes Svigerfader Hs. Durchl.</code> | <code>Landgreve Carl til Churbessen, Generalfeldtmarskal Stadtholder i Hertugdømmene Slesvig og Holsteen, Ridder af Elefanten og Dannebrogsmand.</code> | <code>1.0</code> |
|
| 176 |
+
| <code>, samt Eieren af Riignorgaard i Amtet Gottorf, H. Petersen, udnævnte til Landmaalere.</code> | <code>Under Finants-Collegiet: Til Kasserer for de specielle Oppebørseler i Hertugdommene, har Hs. Majestæt, under 26de Juli dette Aar, udnævnt C. Schleth, Kasserer, Bogholder og Regnskabsfører ved Travensalzer Salme; forhenværende Revisor ved den grønlandske Handel, N. Døller, udnævnt til General-Revisor ved Lottoet i Kjøbenhavn.</code> | <code>0.0</code> |
|
| 177 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
| 178 |
+
```json
|
| 179 |
+
{
|
| 180 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
| 181 |
+
}
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
### Training Hyperparameters
|
| 185 |
+
#### Non-Default Hyperparameters
|
| 186 |
+
|
| 187 |
+
- `per_device_train_batch_size`: 16
|
| 188 |
+
- `per_device_eval_batch_size`: 16
|
| 189 |
+
- `num_train_epochs`: 2
|
| 190 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 191 |
+
|
| 192 |
+
#### All Hyperparameters
|
| 193 |
+
<details><summary>Click to expand</summary>
|
| 194 |
+
|
| 195 |
+
- `overwrite_output_dir`: False
|
| 196 |
+
- `do_predict`: False
|
| 197 |
+
- `eval_strategy`: no
|
| 198 |
+
- `prediction_loss_only`: True
|
| 199 |
+
- `per_device_train_batch_size`: 16
|
| 200 |
+
- `per_device_eval_batch_size`: 16
|
| 201 |
+
- `per_gpu_train_batch_size`: None
|
| 202 |
+
- `per_gpu_eval_batch_size`: None
|
| 203 |
+
- `gradient_accumulation_steps`: 1
|
| 204 |
+
- `eval_accumulation_steps`: None
|
| 205 |
+
- `torch_empty_cache_steps`: None
|
| 206 |
+
- `learning_rate`: 5e-05
|
| 207 |
+
- `weight_decay`: 0.0
|
| 208 |
+
- `adam_beta1`: 0.9
|
| 209 |
+
- `adam_beta2`: 0.999
|
| 210 |
+
- `adam_epsilon`: 1e-08
|
| 211 |
+
- `max_grad_norm`: 1
|
| 212 |
+
- `num_train_epochs`: 2
|
| 213 |
+
- `max_steps`: -1
|
| 214 |
+
- `lr_scheduler_type`: linear
|
| 215 |
+
- `lr_scheduler_kwargs`: {}
|
| 216 |
+
- `warmup_ratio`: 0.0
|
| 217 |
+
- `warmup_steps`: 0
|
| 218 |
+
- `log_level`: passive
|
| 219 |
+
- `log_level_replica`: warning
|
| 220 |
+
- `log_on_each_node`: True
|
| 221 |
+
- `logging_nan_inf_filter`: True
|
| 222 |
+
- `save_safetensors`: True
|
| 223 |
+
- `save_on_each_node`: False
|
| 224 |
+
- `save_only_model`: False
|
| 225 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 226 |
+
- `no_cuda`: False
|
| 227 |
+
- `use_cpu`: False
|
| 228 |
+
- `use_mps_device`: False
|
| 229 |
+
- `seed`: 42
|
| 230 |
+
- `data_seed`: None
|
| 231 |
+
- `jit_mode_eval`: False
|
| 232 |
+
- `use_ipex`: False
|
| 233 |
+
- `bf16`: False
|
| 234 |
+
- `fp16`: False
|
| 235 |
+
- `fp16_opt_level`: O1
|
| 236 |
+
- `half_precision_backend`: auto
|
| 237 |
+
- `bf16_full_eval`: False
|
| 238 |
+
- `fp16_full_eval`: False
|
| 239 |
+
- `tf32`: None
|
| 240 |
+
- `local_rank`: 0
|
| 241 |
+
- `ddp_backend`: None
|
| 242 |
+
- `tpu_num_cores`: None
|
| 243 |
+
- `tpu_metrics_debug`: False
|
| 244 |
+
- `debug`: []
|
| 245 |
+
- `dataloader_drop_last`: False
|
| 246 |
+
- `dataloader_num_workers`: 0
|
| 247 |
+
- `dataloader_prefetch_factor`: None
|
| 248 |
+
- `past_index`: -1
|
| 249 |
+
- `disable_tqdm`: False
|
| 250 |
+
- `remove_unused_columns`: True
|
| 251 |
+
- `label_names`: None
|
| 252 |
+
- `load_best_model_at_end`: False
|
| 253 |
+
- `ignore_data_skip`: False
|
| 254 |
+
- `fsdp`: []
|
| 255 |
+
- `fsdp_min_num_params`: 0
|
| 256 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 257 |
+
- `tp_size`: 0
|
| 258 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 259 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 260 |
+
- `deepspeed`: None
|
| 261 |
+
- `label_smoothing_factor`: 0.0
|
| 262 |
+
- `optim`: adamw_torch
|
| 263 |
+
- `optim_args`: None
|
| 264 |
+
- `adafactor`: False
|
| 265 |
+
- `group_by_length`: False
|
| 266 |
+
- `length_column_name`: length
|
| 267 |
+
- `ddp_find_unused_parameters`: None
|
| 268 |
+
- `ddp_bucket_cap_mb`: None
|
| 269 |
+
- `ddp_broadcast_buffers`: False
|
| 270 |
+
- `dataloader_pin_memory`: True
|
| 271 |
+
- `dataloader_persistent_workers`: False
|
| 272 |
+
- `skip_memory_metrics`: True
|
| 273 |
+
- `use_legacy_prediction_loop`: False
|
| 274 |
+
- `push_to_hub`: False
|
| 275 |
+
- `resume_from_checkpoint`: None
|
| 276 |
+
- `hub_model_id`: None
|
| 277 |
+
- `hub_strategy`: every_save
|
| 278 |
+
- `hub_private_repo`: None
|
| 279 |
+
- `hub_always_push`: False
|
| 280 |
+
- `gradient_checkpointing`: False
|
| 281 |
+
- `gradient_checkpointing_kwargs`: None
|
| 282 |
+
- `include_inputs_for_metrics`: False
|
| 283 |
+
- `include_for_metrics`: []
|
| 284 |
+
- `eval_do_concat_batches`: True
|
| 285 |
+
- `fp16_backend`: auto
|
| 286 |
+
- `push_to_hub_model_id`: None
|
| 287 |
+
- `push_to_hub_organization`: None
|
| 288 |
+
- `mp_parameters`:
|
| 289 |
+
- `auto_find_batch_size`: False
|
| 290 |
+
- `full_determinism`: False
|
| 291 |
+
- `torchdynamo`: None
|
| 292 |
+
- `ray_scope`: last
|
| 293 |
+
- `ddp_timeout`: 1800
|
| 294 |
+
- `torch_compile`: False
|
| 295 |
+
- `torch_compile_backend`: None
|
| 296 |
+
- `torch_compile_mode`: None
|
| 297 |
+
- `include_tokens_per_second`: False
|
| 298 |
+
- `include_num_input_tokens_seen`: False
|
| 299 |
+
- `neftune_noise_alpha`: None
|
| 300 |
+
- `optim_target_modules`: None
|
| 301 |
+
- `batch_eval_metrics`: False
|
| 302 |
+
- `eval_on_start`: False
|
| 303 |
+
- `use_liger_kernel`: False
|
| 304 |
+
- `eval_use_gather_object`: False
|
| 305 |
+
- `average_tokens_across_devices`: False
|
| 306 |
+
- `prompts`: None
|
| 307 |
+
- `batch_sampler`: batch_sampler
|
| 308 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 309 |
+
|
| 310 |
+
</details>
|
| 311 |
+
|
| 312 |
+
### Training Logs
|
| 313 |
+
| Epoch | Step | Training Loss |
|
| 314 |
+
|:------:|:----:|:-------------:|
|
| 315 |
+
| 0.3900 | 500 | 0.1395 |
|
| 316 |
+
| 0.7800 | 1000 | 0.1189 |
|
| 317 |
+
| 1.1700 | 1500 | 0.1008 |
|
| 318 |
+
| 1.5601 | 2000 | 0.0785 |
|
| 319 |
+
| 1.9501 | 2500 | 0.0803 |
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
### Framework Versions
|
| 323 |
+
- Python: 3.11.12
|
| 324 |
+
- Sentence Transformers: 4.1.0
|
| 325 |
+
- Transformers: 4.51.3
|
| 326 |
+
- PyTorch: 2.7.0
|
| 327 |
+
- Accelerate: 1.6.0
|
| 328 |
+
- Datasets: 2.19.2
|
| 329 |
+
- Tokenizers: 0.21.1
|
| 330 |
+
|
| 331 |
+
## Citation
|
| 332 |
+
|
| 333 |
+
### BibTeX
|
| 334 |
+
|
| 335 |
+
#### Sentence Transformers
|
| 336 |
+
```bibtex
|
| 337 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 338 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 339 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 340 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 341 |
+
month = "11",
|
| 342 |
+
year = "2019",
|
| 343 |
+
publisher = "Association for Computational Linguistics",
|
| 344 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 345 |
+
}
|
| 346 |
+
```
|
| 347 |
+
|
| 348 |
+
<!--
|
| 349 |
+
## Glossary
|
| 350 |
+
|
| 351 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 352 |
+
-->
|
| 353 |
+
|
| 354 |
+
<!--
|
| 355 |
+
## Model Card Authors
|
| 356 |
+
|
| 357 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 358 |
+
-->
|
| 359 |
+
|
| 360 |
+
<!--
|
| 361 |
+
## Model Card Contact
|
| 362 |
+
|
| 363 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 364 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 768,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 3072,
|
| 12 |
+
"layer_norm_eps": 1e-12,
|
| 13 |
+
"max_position_embeddings": 512,
|
| 14 |
+
"model_type": "bert",
|
| 15 |
+
"num_attention_heads": 12,
|
| 16 |
+
"num_hidden_layers": 12,
|
| 17 |
+
"pad_token_id": 0,
|
| 18 |
+
"position_embedding_type": "absolute",
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.51.3",
|
| 21 |
+
"type_vocab_size": 2,
|
| 22 |
+
"use_cache": true,
|
| 23 |
+
"vocab_size": 30522
|
| 24 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.7.0"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49e6c8d69b2a0826a0b0a3b914b42cb0fea7f116d44bec20452ef01d5509310e
|
| 3 |
+
size 437951328
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|