--- library_name: transformers license: apache-2.0 base_model: bert-large-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-10-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.8324636891086795 --- # bert-large-10-ner This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.8332 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 1.1341 | 0.0731 | 0.0151 | 0.0251 | 0.8169 | | No log | 2.0 | 20 | 0.8682 | 0.2857 | 0.0010 | 0.0020 | 0.8324 | | No log | 3.0 | 30 | 0.8332 | 0.0 | 0.0 | 0.0 | 0.8325 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1