--- library_name: transformers license: apache-2.0 base_model: bert-large-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-20-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.26426174496644295 - name: Recall type: recall value: 0.05301245371928644 - name: F1 type: f1 value: 0.08830950378469302 - name: Accuracy type: accuracy value: 0.8491102371402983 --- # bert-large-20-ner This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.5525 - Precision: 0.2643 - Recall: 0.0530 - F1: 0.0883 - Accuracy: 0.8491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 0.7702 | 0.2857 | 0.0003 | 0.0007 | 0.8326 | | No log | 2.0 | 50 | 0.6046 | 0.1537 | 0.0106 | 0.0198 | 0.8373 | | No log | 3.0 | 75 | 0.5525 | 0.2643 | 0.0530 | 0.0883 | 0.8491 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1