Jrine commited on
Commit
d5f585c
·
verified ·
1 Parent(s): ddbc010

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -29
README.md CHANGED
@@ -1,32 +1,30 @@
1
  ---
2
- license: mit
3
- ---
4
- # Step 3: Create a comprehensive model card (README.md)
5
- model_card = f"""---
6
  language: en
7
  license: apache-2.0
8
  tags:
9
- - text-classification
10
- - education
11
- - taxonomy
12
- - dave-psychomotor
13
- - learning-objectives
 
14
  datasets:
15
- - custom
16
  metrics:
17
- - accuracy
18
- - f1
19
  widget:
20
- - text: "Students will observe and replicate the proper hand positioning during violin lessons"
21
- example_title: "Imitation Example"
22
- - text: "Learners will perform the CPR procedure following the training manual guidelines"
23
- example_title: "Manipulation Example"
24
- - text: "Nurses will accurately draw 5mL of medication into a syringe with 0.1mL precision"
25
- example_title: "Precision Example"
26
- - text: "Physical therapists will coordinate breathing patterns with stride rhythm"
27
- example_title: "Articulation Example"
28
- - text: "Expert surgeons will intuitively navigate complex anatomical structures"
29
- example_title: "Naturalization Example"
 
30
  ---
31
 
32
  # Dave's Psychomotor Taxonomy Classifier
@@ -43,18 +41,19 @@ This model classifies educational learning objectives according to **R.H. Dave's
43
  - **Level 3: Articulation** - Coordinating multiple skills and adapting
44
  - **Level 4: Naturalization** - Automated, unconscious mastery
45
 
 
 
 
 
 
 
 
 
46
  ## Training Data
47
 
48
  - **Dataset Size**: 298 learning objectives
49
  - **Balance**: ~60 examples per level
50
  - **Domains**: Medical/Healthcare, Sports, Performing Arts, Skilled Trades, Technology, Culinary Arts, Manufacturing, Emergency Services, Laboratory Sciences, Fine Arts
51
 
52
- ## Model Performance
53
-
54
- - **Test Accuracy**: {overall_acc:.2%} (update after evaluation)
55
- - **Model Type**: BERT-base-uncased fine-tuned
56
- - **Training Epochs**: 5
57
- - **Batch Size**: 16
58
-
59
  ## Usage
60
 
 
1
  ---
 
 
 
 
2
  language: en
3
  license: apache-2.0
4
  tags:
5
+ - text-classification
6
+ - education
7
+ - taxonomy
8
+ - dave-psychomotor
9
+ - learning-objectives
10
+ - motor-skills
11
  datasets:
12
+ - custom
13
  metrics:
14
+ - accuracy
15
+ - f1
16
  widget:
17
+ - text: "Students will observe and replicate the proper hand positioning during violin lessons"
18
+ example_title: "Imitation Example"
19
+ - text: "Learners will perform the CPR procedure following the training manual guidelines"
20
+ example_title: "Manipulation Example"
21
+ - text: "Nurses will accurately draw 5mL of medication into a syringe with 0.1mL precision"
22
+ example_title: "Precision Example"
23
+ - text: "Physical therapists will coordinate breathing patterns with stride rhythm"
24
+ example_title: "Articulation Example"
25
+ - text: "Expert surgeons will intuitively navigate complex anatomical structures"
26
+ example_title: "Naturalization Example"
27
+ pipeline_tag: text-classification
28
  ---
29
 
30
  # Dave's Psychomotor Taxonomy Classifier
 
41
  - **Level 3: Articulation** - Coordinating multiple skills and adapting
42
  - **Level 4: Naturalization** - Automated, unconscious mastery
43
 
44
+ ## Model Details
45
+
46
+ - **Model Type**: BERT-based sequence classification
47
+ - **Base Model**: `bert-base-uncased`
48
+ - **Fine-tuned on**: Custom dataset of psychomotor learning objectives
49
+ - **Language**: English
50
+ - **License**: Apache 2.0
51
+
52
  ## Training Data
53
 
54
  - **Dataset Size**: 298 learning objectives
55
  - **Balance**: ~60 examples per level
56
  - **Domains**: Medical/Healthcare, Sports, Performing Arts, Skilled Trades, Technology, Culinary Arts, Manufacturing, Emergency Services, Laboratory Sciences, Fine Arts
57
 
 
 
 
 
 
 
 
58
  ## Usage
59