Upload checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test
Browse files- .gitattributes +2 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/debug-internal.log +8 -8
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/debug.log +23 -23
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260103_081257-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/config.yaml +1 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260103_081257-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/output.log +174 -200
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/config.yaml +437 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/output.log +601 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/wandb-metadata.json +1 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/wandb-summary.json +1 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-core.log +1 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb +2 -2
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/requirements.txt +354 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-core.log +7 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-internal.log +8 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug.log +24 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb +3 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/requirements.txt +354 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-core.log +7 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-internal.log +8 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug.log +24 -0
- checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb +3 -0
.gitattributes
CHANGED
|
@@ -210,3 +210,5 @@ checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_ji
|
|
| 210 |
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_no_mse/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_no_mse/wandb/offline-run-20260104_091756-checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_no_mse_ema993_hashed-run0/run-checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_no_mse_ema993_hashed-run0.wandb filter=lfs diff=lfs merge=lfs -text
|
| 211 |
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb filter=lfs diff=lfs merge=lfs -text
|
| 212 |
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce/wandb/offline-run-20260104_093254-checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_ema993_hashed-run0/run-checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_ema993_hashed-run0.wandb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 210 |
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_no_mse/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_no_mse/wandb/offline-run-20260104_091756-checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_no_mse_ema993_hashed-run0/run-checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_no_mse_ema993_hashed-run0.wandb filter=lfs diff=lfs merge=lfs -text
|
| 211 |
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb filter=lfs diff=lfs merge=lfs -text
|
| 212 |
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce/wandb/offline-run-20260104_093254-checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_ema993_hashed-run0/run-checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_ce_ema993_hashed-run0.wandb filter=lfs diff=lfs merge=lfs -text
|
| 213 |
+
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb filter=lfs diff=lfs merge=lfs -text
|
| 214 |
+
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb filter=lfs diff=lfs merge=lfs -text
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/debug-internal.log
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
{"time":"2026-01-04T09:
|
| 2 |
-
{"time":"2026-01-04T09:
|
| 3 |
-
{"time":"2026-01-04T09:
|
| 4 |
-
{"time":"2026-01-04T09:
|
| 5 |
-
{"time":"2026-01-04T09:
|
| 6 |
-
{"time":"2026-01-04T09:
|
| 7 |
-
{"time":"2026-01-04T09:
|
| 8 |
-
{"time":"2026-01-04T09:
|
|
|
|
| 1 |
+
{"time":"2026-01-04T09:41:58.817034119Z","level":"INFO","msg":"stream: starting","core version":"0.23.1"}
|
| 2 |
+
{"time":"2026-01-04T09:41:59.538864599Z","level":"WARN","msg":"featurechecker: GraphQL client is nil, skipping feature loading"}
|
| 3 |
+
{"time":"2026-01-04T09:41:59.538957051Z","level":"INFO","msg":"stream: created new stream","id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 4 |
+
{"time":"2026-01-04T09:41:59.539033043Z","level":"INFO","msg":"handler: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 5 |
+
{"time":"2026-01-04T09:41:59.539155721Z","level":"INFO","msg":"stream: started","id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 6 |
+
{"time":"2026-01-04T09:41:59.539184904Z","level":"INFO","msg":"writer: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 7 |
+
{"time":"2026-01-04T09:41:59.539218617Z","level":"INFO","msg":"sender: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 8 |
+
{"time":"2026-01-04T09:41:59.539987313Z","level":"WARN","msg":"runupserter: server does not expand metric globs but the x_server_side_expand_glob_metrics setting is set; ignoring"}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/debug.log
CHANGED
|
@@ -1,24 +1,24 @@
|
|
| 1 |
-
2026-01-04 09:
|
| 2 |
-
2026-01-04 09:
|
| 3 |
-
2026-01-04 09:
|
| 4 |
-
2026-01-04 09:
|
| 5 |
-
2026-01-04 09:
|
| 6 |
-
2026-01-04 09:
|
| 7 |
-
2026-01-04 09:
|
| 8 |
-
2026-01-04 09:
|
| 9 |
-
2026-01-04 09:
|
| 10 |
config: {'_wandb': {}}
|
| 11 |
-
2026-01-04 09:
|
| 12 |
-
2026-01-04 09:
|
| 13 |
-
2026-01-04 09:
|
| 14 |
-
2026-01-04 09:
|
| 15 |
-
2026-01-04 09:
|
| 16 |
-
2026-01-04 09:
|
| 17 |
-
2026-01-04 09:
|
| 18 |
-
2026-01-04 09:
|
| 19 |
-
2026-01-04 09:
|
| 20 |
-
2026-01-04 09:
|
| 21 |
-
2026-01-04 09:
|
| 22 |
-
2026-01-04 09:
|
| 23 |
-
2026-01-04 09:
|
| 24 |
-
2026-01-04 09:
|
|
|
|
| 1 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Current SDK version is 0.23.1
|
| 2 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Configure stats pid to 49730
|
| 3 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Loading settings from /home/clouduser/.config/wandb/settings
|
| 4 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Loading settings from /home/clouduser/Code/Github/unified_world_model/wandb/settings
|
| 5 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Loading settings from environment variables
|
| 6 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_init.py:setup_run_log_directory():714] Logging user logs to /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug.log
|
| 7 |
+
2026-01-04 09:41:58,407 INFO MainThread:49730 [wandb_init.py:setup_run_log_directory():715] Logging internal logs to /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-internal.log
|
| 8 |
+
2026-01-04 09:41:58,407 INFO MainThread:49730 [wandb_init.py:init():841] calling init triggers
|
| 9 |
+
2026-01-04 09:41:58,407 INFO MainThread:49730 [wandb_init.py:init():846] wandb.init called with sweep_config: {}
|
| 10 |
config: {'_wandb': {}}
|
| 11 |
+
2026-01-04 09:41:58,407 INFO MainThread:49730 [wandb_init.py:init():889] starting backend
|
| 12 |
+
2026-01-04 09:41:58,797 INFO MainThread:49730 [wandb_init.py:init():892] sending inform_init request
|
| 13 |
+
2026-01-04 09:41:58,805 INFO MainThread:49730 [wandb_init.py:init():900] backend started and connected
|
| 14 |
+
2026-01-04 09:41:58,807 INFO MainThread:49730 [wandb_init.py:init():970] updated telemetry
|
| 15 |
+
2026-01-04 09:41:58,816 INFO MainThread:49730 [wandb_init.py:init():994] communicating run to backend with 90.0 second timeout
|
| 16 |
+
2026-01-04 09:41:59,542 INFO MainThread:49730 [wandb_init.py:init():1041] starting run threads in backend
|
| 17 |
+
2026-01-04 09:41:59,917 INFO MainThread:49730 [wandb_run.py:_console_start():2521] atexit reg
|
| 18 |
+
2026-01-04 09:41:59,918 INFO MainThread:49730 [wandb_run.py:_redirect():2369] redirect: wrap_raw
|
| 19 |
+
2026-01-04 09:41:59,918 INFO MainThread:49730 [wandb_run.py:_redirect():2438] Wrapping output streams.
|
| 20 |
+
2026-01-04 09:41:59,918 INFO MainThread:49730 [wandb_run.py:_redirect():2461] Redirects installed.
|
| 21 |
+
2026-01-04 09:41:59,921 INFO MainThread:49730 [wandb_init.py:init():1081] run started, returning control to user process
|
| 22 |
+
2026-01-04 09:41:59,922 INFO MainThread:49730 [wandb_run.py:_config_callback():1396] config_cb None None {'visual_gen': True, 'visual_und': True, 'results_dir': 'results', 'checkpoint_dir': '/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test', 'wandb_project': 'bagel', 'wandb_name': 'vlm_gym_jigsaw_one_img_lr2e_5_mse_only', 'wandb_runid': '0', 'wandb_resume': 'allow', 'wandb_offline': True, 'wandb_dir': '/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test', 'global_seed': 4396, 'auto_resume': False, 'resume_from': '/home/clouduser/Code/Models/BAGEL-7B-MoT', 'resume_model_only': True, 'finetune_from_ema': True, 'finetune_from_hf': True, 'log_every': 1, 'save_every': 2500, 'total_steps': 5000, 'warmup_steps': 300, 'lr_scheduler': 'cosine', 'lr': 2e-05, 'min_lr': 1e-07, 'beta1': 0.9, 'beta2': 0.95, 'eps': 1e-15, 'ema': 0.993, 'max_grad_norm': 1.0, 'timestep_shift': 1.0, 'mse_weight': 1.0, 'ce_weight': 1.0, 'ce_loss_reweighting': False, 'expected_num_tokens': 20000, 'num_replicate': 1, 'num_shard': 8, 'sharding_strategy': 'HYBRID_SHARD', 'backward_prefetch': 'BACKWARD_PRE', 'cpu_offload': False, 'freeze_llm': False, 'freeze_vit': False, 'freeze_vae': True, 'freeze_und': False, 'copy_init_moe': True, 'use_flex': False, 'eval_every': 500, 'num_eval_batches': 20, 'use_ema_for_eval': True, 'viz_every': 10, 'viz_n': 8, 'viz_outdir': 'results/viz', 'eval_dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'viz_dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'save_ema_only': True, 'save_optimizer': False}
|
| 23 |
+
2026-01-04 09:41:59,923 INFO MainThread:49730 [wandb_run.py:_config_callback():1396] config_cb None None {'model_path': '/home/clouduser/Code/Models/BAGEL-7B-MoT', 'llm_path': 'hf/Qwen2.5-0.5B-Instruct/', 'llm_qk_norm': True, 'tie_word_embeddings': False, 'layer_module': 'Qwen2MoTDecoderLayer', 'vae_path': 'flux/vae/ae.safetensors', 'vit_path': 'hf/siglip-so400m-14-980-flash-attn2-navit/', 'max_latent_size': 64, 'latent_patch_size': 2, 'vit_patch_size': 14, 'vit_max_num_patch_per_side': 70, 'connector_act': 'gelu_pytorch_tanh', 'interpolate_pos': False, 'vit_select_layer': -2, 'vit_rope': False, 'text_cond_dropout_prob': 0.0, 'vae_cond_dropout_prob': 0.0, 'vit_cond_dropout_prob': 0.0}
|
| 24 |
+
2026-01-04 09:41:59,924 INFO MainThread:49730 [wandb_run.py:_config_callback():1396] config_cb None None {'dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'train_data_dir': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/', 'train_jsonl_path': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/', 'eval_data_dir': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/', 'eval_jsonl_path': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/', 'inference_hash_file': '/home/clouduser/Code/Github/launch_new/hashes_test_set_v10.json', 'prefetch_factor': 2, 'num_workers': 1, 'max_num_tokens_per_sample': 20000, 'max_num_tokens': 20000, 'prefer_buffer_before': 16384, 'max_buffer_size': 50, 'data_seed': 42}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260103_081257-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/config.yaml
CHANGED
|
@@ -34,6 +34,7 @@ _wandb:
|
|
| 34 |
- 4
|
| 35 |
- 13
|
| 36 |
- 14
|
|
|
|
| 37 |
- 42
|
| 38 |
- 61
|
| 39 |
4: 3.11.10
|
|
|
|
| 34 |
- 4
|
| 35 |
- 13
|
| 36 |
- 14
|
| 37 |
+
- 37
|
| 38 |
- 42
|
| 39 |
- 61
|
| 40 |
4: 3.11.10
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260103_081257-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/output.log
CHANGED
|
@@ -1,176 +1,3 @@
|
|
| 1 |
-
FullyShardedDataParallel(
|
| 2 |
-
(_fsdp_wrapped_module): Bagel(
|
| 3 |
-
(language_model): Qwen2ForCausalLM(
|
| 4 |
-
(model): Qwen2Model(
|
| 5 |
-
(embed_tokens): Embedding(152064, 3584)
|
| 6 |
-
(layers): ModuleList(
|
| 7 |
-
(0-27): 28 x FullyShardedDataParallel(
|
| 8 |
-
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 9 |
-
(_checkpoint_wrapped_module): Qwen2MoTDecoderLayer(
|
| 10 |
-
(self_attn): PackedAttentionMoT(
|
| 11 |
-
(q_proj): Linear(in_features=3584, out_features=3584, bias=True)
|
| 12 |
-
(k_proj): Linear(in_features=3584, out_features=512, bias=True)
|
| 13 |
-
(v_proj): Linear(in_features=3584, out_features=512, bias=True)
|
| 14 |
-
(o_proj): Linear(in_features=3584, out_features=3584, bias=False)
|
| 15 |
-
(q_norm): Qwen2RMSNorm((128,), eps=1e-06)
|
| 16 |
-
(k_norm): Qwen2RMSNorm((128,), eps=1e-06)
|
| 17 |
-
(q_norm_moe_gen): Qwen2RMSNorm((128,), eps=1e-06)
|
| 18 |
-
(k_norm_moe_gen): Qwen2RMSNorm((128,), eps=1e-06)
|
| 19 |
-
(q_proj_moe_gen): Linear(in_features=3584, out_features=3584, bias=True)
|
| 20 |
-
(k_proj_moe_gen): Linear(in_features=3584, out_features=512, bias=True)
|
| 21 |
-
(v_proj_moe_gen): Linear(in_features=3584, out_features=512, bias=True)
|
| 22 |
-
(o_proj_moe_gen): Linear(in_features=3584, out_features=3584, bias=False)
|
| 23 |
-
)
|
| 24 |
-
(mlp): Qwen2MLP(
|
| 25 |
-
(gate_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 26 |
-
(up_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 27 |
-
(down_proj): Linear(in_features=18944, out_features=3584, bias=False)
|
| 28 |
-
(act_fn): SiLU()
|
| 29 |
-
)
|
| 30 |
-
(mlp_moe_gen): Qwen2MLP(
|
| 31 |
-
(gate_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 32 |
-
(up_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 33 |
-
(down_proj): Linear(in_features=18944, out_features=3584, bias=False)
|
| 34 |
-
(act_fn): SiLU()
|
| 35 |
-
)
|
| 36 |
-
(input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 37 |
-
(input_layernorm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 38 |
-
(post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 39 |
-
(post_attention_layernorm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 40 |
-
)
|
| 41 |
-
)
|
| 42 |
-
)
|
| 43 |
-
)
|
| 44 |
-
(norm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 45 |
-
(norm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 46 |
-
(rotary_emb): Qwen2RotaryEmbedding()
|
| 47 |
-
)
|
| 48 |
-
(lm_head): Linear(in_features=3584, out_features=152064, bias=False)
|
| 49 |
-
)
|
| 50 |
-
(time_embedder): FullyShardedDataParallel(
|
| 51 |
-
(_fsdp_wrapped_module): TimestepEmbedder(
|
| 52 |
-
(mlp): Sequential(
|
| 53 |
-
(0): Linear(in_features=256, out_features=3584, bias=True)
|
| 54 |
-
(1): SiLU()
|
| 55 |
-
(2): Linear(in_features=3584, out_features=3584, bias=True)
|
| 56 |
-
)
|
| 57 |
-
)
|
| 58 |
-
)
|
| 59 |
-
(vae2llm): Linear(in_features=64, out_features=3584, bias=True)
|
| 60 |
-
(llm2vae): Linear(in_features=3584, out_features=64, bias=True)
|
| 61 |
-
(latent_pos_embed): FullyShardedDataParallel(
|
| 62 |
-
(_fsdp_wrapped_module): PositionEmbedding()
|
| 63 |
-
)
|
| 64 |
-
(vit_model): SiglipVisionModel(
|
| 65 |
-
(vision_model): FullyShardedDataParallel(
|
| 66 |
-
(_fsdp_wrapped_module): SiglipVisionTransformer(
|
| 67 |
-
(embeddings): SiglipVisionEmbeddings(
|
| 68 |
-
(position_embedding): Embedding(4900, 1152)
|
| 69 |
-
(patch_embedding): Linear(in_features=588, out_features=1152, bias=True)
|
| 70 |
-
)
|
| 71 |
-
(encoder): SiglipEncoder(
|
| 72 |
-
(layers): ModuleList(
|
| 73 |
-
(0-25): 26 x FullyShardedDataParallel(
|
| 74 |
-
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 75 |
-
(_checkpoint_wrapped_module): SiglipEncoderLayer(
|
| 76 |
-
(self_attn): SiglipFlashAttention2(
|
| 77 |
-
(k_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 78 |
-
(v_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 79 |
-
(q_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 80 |
-
(out_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 81 |
-
)
|
| 82 |
-
(layer_norm1): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 83 |
-
(mlp): SiglipMLP(
|
| 84 |
-
(activation_fn): PytorchGELUTanh()
|
| 85 |
-
(fc1): Linear(in_features=1152, out_features=4304, bias=True)
|
| 86 |
-
(fc2): Linear(in_features=4304, out_features=1152, bias=True)
|
| 87 |
-
)
|
| 88 |
-
(layer_norm2): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 89 |
-
)
|
| 90 |
-
)
|
| 91 |
-
)
|
| 92 |
-
)
|
| 93 |
-
)
|
| 94 |
-
(post_layernorm): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 95 |
-
)
|
| 96 |
-
)
|
| 97 |
-
)
|
| 98 |
-
(connector): FullyShardedDataParallel(
|
| 99 |
-
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 100 |
-
(_checkpoint_wrapped_module): MLPconnector(
|
| 101 |
-
(activation_fn): PytorchGELUTanh()
|
| 102 |
-
(fc1): Linear(in_features=1152, out_features=3584, bias=True)
|
| 103 |
-
(fc2): Linear(in_features=3584, out_features=3584, bias=True)
|
| 104 |
-
)
|
| 105 |
-
)
|
| 106 |
-
)
|
| 107 |
-
(vit_pos_embed): FullyShardedDataParallel(
|
| 108 |
-
(_fsdp_wrapped_module): PositionEmbedding()
|
| 109 |
-
)
|
| 110 |
-
)
|
| 111 |
-
)
|
| 112 |
-
_flat_param True
|
| 113 |
-
language_model.model.layers.0._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 114 |
-
language_model.model.layers.1._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 115 |
-
language_model.model.layers.2._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 116 |
-
language_model.model.layers.3._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 117 |
-
language_model.model.layers.4._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 118 |
-
language_model.model.layers.5._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 119 |
-
language_model.model.layers.6._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 120 |
-
language_model.model.layers.7._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 121 |
-
language_model.model.layers.8._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 122 |
-
language_model.model.layers.9._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 123 |
-
language_model.model.layers.10._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 124 |
-
language_model.model.layers.11._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 125 |
-
language_model.model.layers.12._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 126 |
-
language_model.model.layers.13._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 127 |
-
language_model.model.layers.14._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 128 |
-
language_model.model.layers.15._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 129 |
-
language_model.model.layers.16._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 130 |
-
language_model.model.layers.17._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 131 |
-
language_model.model.layers.18._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 132 |
-
language_model.model.layers.19._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 133 |
-
language_model.model.layers.20._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 134 |
-
language_model.model.layers.21._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 135 |
-
language_model.model.layers.22._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 136 |
-
language_model.model.layers.23._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 137 |
-
language_model.model.layers.24._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 138 |
-
language_model.model.layers.25._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 139 |
-
language_model.model.layers.26._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 140 |
-
language_model.model.layers.27._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 141 |
-
time_embedder._fsdp_wrapped_module._flat_param True
|
| 142 |
-
latent_pos_embed._fsdp_wrapped_module._flat_param False
|
| 143 |
-
vit_model.vision_model._fsdp_wrapped_module._flat_param True
|
| 144 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.0._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 145 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.1._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 146 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.2._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 147 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.3._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 148 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.4._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 149 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.5._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 150 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.6._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 151 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.7._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 152 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.8._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 153 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.9._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 154 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.10._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 155 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.11._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 156 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.12._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 157 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.13._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 158 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.14._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 159 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.15._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 160 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.16._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 161 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.17._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 162 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.18._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 163 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.19._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 164 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.20._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 165 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.21._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 166 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.22._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 167 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.23._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 168 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.24._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 169 |
-
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.25._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 170 |
-
connector._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 171 |
-
vit_pos_embed._fsdp_wrapped_module._flat_param False
|
| 172 |
-
Preparing Dataset vlm_gym_jigsaw_mse_loss_only/vlm_gym_jigsaw_train
|
| 173 |
-
Preparing Dataset vlm_gym_jigsaw_mse_loss_only/vlm_gym_jigsaw_train
|
| 174 |
wandb: Detected [huggingface_hub.inference] in use.
|
| 175 |
wandb: Use W&B Weave for improved LLM call tracing. Install Weave with `pip install weave` then add `import weave` to the top of your script.
|
| 176 |
wandb: For more information, check out the docs at: https://weave-docs.wandb.ai/
|
|
@@ -1020,6 +847,179 @@ ImportError: cannot import name 'NaiveCache' from 'modeling.bagel' (/home/cloudu
|
|
| 1020 |
[[34m2026-01-03 11:25:55[39m] (step=0000804) Train Loss mse: 0.0543, Train Loss ce: 0.0000, Train Steps/Sec: 0.11,
|
| 1021 |
[[34m2026-01-03 11:26:08[39m] (step=0000805) Train Loss mse: 0.0459, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 1022 |
[[34m2026-01-03 11:26:20[39m] (step=0000806) Train Loss mse: 0.0528, Train Loss ce: 0.0000, Train Steps/Sec: 0.09,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1023 |
[[34m2026-01-03 11:26:33[39m] (step=0000807) Train Loss mse: 0.0442, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 1024 |
[[34m2026-01-03 11:26:50[39m] (step=0000808) Train Loss mse: 0.0267, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 1025 |
[[34m2026-01-03 11:27:03[39m] (step=0000809) Train Loss mse: 0.0418, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
|
@@ -3097,33 +3097,7 @@ ImportError: cannot import name 'NaiveCache' from 'modeling.bagel' (/home/cloudu
|
|
| 3097 |
[[34m2026-01-03 19:16:05[39m] (step=0002814) Train Loss mse: 0.0356, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3098 |
[[34m2026-01-03 19:16:18[39m] (step=0002815) Train Loss mse: 0.0276, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3099 |
[[34m2026-01-03 19:16:34[39m] (step=0002816) Train Loss mse: 0.0326, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3100 |
-
[[34m2026-01-03 19:16:48
|
| 3101 |
-
[[34m2026-01-03 19:17:01[39m] (step=0002818) Train Loss mse: 0.0298, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3102 |
-
[[34m2026-01-03 19:17:14[39m] (step=0002819) Train Loss mse: 0.0316, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3103 |
-
[[34m2026-01-03 19:17:27[39m] (step=0002820) Train Loss mse: 0.0282, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3104 |
-
[[34m2026-01-03 19:17:40[39m] (step=0002821) Train Loss mse: 0.0263, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3105 |
-
[[34m2026-01-03 19:17:54[39m] (step=0002822) Train Loss mse: 0.0310, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3106 |
-
[[34m2026-01-03 19:18:05[39m] (step=0002823) Train Loss mse: 0.0302, Train Loss ce: 0.0000, Train Steps/Sec: 0.09,
|
| 3107 |
-
[[34m2026-01-03 19:18:17[39m] (step=0002824) Train Loss mse: 0.0385, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3108 |
-
[[34m2026-01-03 19:18:33[39m] (step=0002825) Train Loss mse: 0.0330, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3109 |
-
[[34m2026-01-03 19:18:46[39m] (step=0002826) Train Loss mse: 0.0317, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3110 |
-
[[34m2026-01-03 19:19:02[39m] (step=0002827) Train Loss mse: 0.0244, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3111 |
-
[[34m2026-01-03 19:19:15[39m] (step=0002828) Train Loss mse: 0.0418, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3112 |
-
[[34m2026-01-03 19:19:29[39m] (step=0002829) Train Loss mse: 0.0240, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3113 |
-
[[34m2026-01-03 19:19:40[39m] (step=0002830) Train Loss mse: 0.0307, Train Loss ce: 0.0000, Train Steps/Sec: 0.09,
|
| 3114 |
-
[[34m2026-01-03 19:19:56[39m] (step=0002831) Train Loss mse: 0.0293, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3115 |
-
[[34m2026-01-03 19:20:10[39m] (step=0002832) Train Loss mse: 0.0304, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3116 |
-
[[34m2026-01-03 19:20:26[39m] (step=0002833) Train Loss mse: 0.0202, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3117 |
-
[[34m2026-01-03 19:20:38[39m] (step=0002834) Train Loss mse: 0.0276, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3118 |
-
[[34m2026-01-03 19:20:51[39m] (step=0002835) Train Loss mse: 0.0340, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3119 |
-
[[34m2026-01-03 19:21:06[39m] (step=0002836) Train Loss mse: 0.0237, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3120 |
-
[[34m2026-01-03 19:21:19[39m] (step=0002837) Train Loss mse: 0.0333, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3121 |
-
[[34m2026-01-03 19:21:33[39m] (step=0002838) Train Loss mse: 0.0276, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3122 |
-
[[34m2026-01-03 19:21:47[39m] (step=0002839) Train Loss mse: 0.0301, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3123 |
-
[[34m2026-01-03 19:21:59[39m] (step=0002840) Train Loss mse: 0.0299, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3124 |
-
[[34m2026-01-03 19:22:14[39m] (step=0002841) Train Loss mse: 0.0305, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3125 |
-
[[34m2026-01-03 19:22:28[39m] (step=0002842) Train Loss mse: 0.0285, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3126 |
-
[[34m2026-01-03 19:22:44[39m] (step=0002843) Train Loss mse: 0.0367, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3127 |
[[34m2026-01-03 19:22:57[39m] (step=0002844) Train Loss mse: 0.0234, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3128 |
[[34m2026-01-03 19:23:13[39m] (step=0002845) Train Loss mse: 0.0283, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3129 |
[[34m2026-01-03 19:23:29[39m] (step=0002846) Train Loss mse: 0.0367, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
wandb: Detected [huggingface_hub.inference] in use.
|
| 2 |
wandb: Use W&B Weave for improved LLM call tracing. Install Weave with `pip install weave` then add `import weave` to the top of your script.
|
| 3 |
wandb: For more information, check out the docs at: https://weave-docs.wandb.ai/
|
|
|
|
| 847 |
[[34m2026-01-03 11:25:55[39m] (step=0000804) Train Loss mse: 0.0543, Train Loss ce: 0.0000, Train Steps/Sec: 0.11,
|
| 848 |
[[34m2026-01-03 11:26:08[39m] (step=0000805) Train Loss mse: 0.0459, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 849 |
[[34m2026-01-03 11:26:20[39m] (step=0000806) Train Loss mse: 0.0528, Train Loss ce: 0.0000, Train Steps/Sec: 0.09,
|
| 850 |
+
FullyShardedDataParallel(
|
| 851 |
+
(_fsdp_wrapped_module): Bagel(
|
| 852 |
+
(language_model): Qwen2ForCausalLM(
|
| 853 |
+
(model): Qwen2Model(
|
| 854 |
+
(embed_tokens): Embedding(152064, 3584)
|
| 855 |
+
(layers): ModuleList(
|
| 856 |
+
(0-27): 28 x FullyShardedDataParallel(
|
| 857 |
+
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 858 |
+
(_checkpoint_wrapped_module): Qwen2MoTDecoderLayer(
|
| 859 |
+
(self_attn): PackedAttentionMoT(
|
| 860 |
+
(q_proj): Linear(in_features=3584, out_features=3584, bias=True)
|
| 861 |
+
(k_proj): Linear(in_features=3584, out_features=512, bias=True)
|
| 862 |
+
(v_proj): Linear(in_features=3584, out_features=512, bias=True)
|
| 863 |
+
(o_proj): Linear(in_features=3584, out_features=3584, bias=False)
|
| 864 |
+
(q_norm): Qwen2RMSNorm((128,), eps=1e-06)
|
| 865 |
+
(k_norm): Qwen2RMSNorm((128,), eps=1e-06)
|
| 866 |
+
(q_norm_moe_gen): Qwen2RMSNorm((128,), eps=1e-06)
|
| 867 |
+
(k_norm_moe_gen): Qwen2RMSNorm((128,), eps=1e-06)
|
| 868 |
+
(q_proj_moe_gen): Linear(in_features=3584, out_features=3584, bias=True)
|
| 869 |
+
(k_proj_moe_gen): Linear(in_features=3584, out_features=512, bias=True)
|
| 870 |
+
(v_proj_moe_gen): Linear(in_features=3584, out_features=512, bias=True)
|
| 871 |
+
(o_proj_moe_gen): Linear(in_features=3584, out_features=3584, bias=False)
|
| 872 |
+
)
|
| 873 |
+
(mlp): Qwen2MLP(
|
| 874 |
+
(gate_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 875 |
+
(up_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 876 |
+
(down_proj): Linear(in_features=18944, out_features=3584, bias=False)
|
| 877 |
+
(act_fn): SiLU()
|
| 878 |
+
)
|
| 879 |
+
(mlp_moe_gen): Qwen2MLP(
|
| 880 |
+
(gate_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 881 |
+
(up_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 882 |
+
(down_proj): Linear(in_features=18944, out_features=3584, bias=False)
|
| 883 |
+
(act_fn): SiLU()
|
| 884 |
+
)
|
| 885 |
+
(input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 886 |
+
(input_layernorm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 887 |
+
(post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 888 |
+
(post_attention_layernorm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 889 |
+
)
|
| 890 |
+
)
|
| 891 |
+
)
|
| 892 |
+
)
|
| 893 |
+
(norm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 894 |
+
(norm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 895 |
+
(rotary_emb): Qwen2RotaryEmbedding()
|
| 896 |
+
)
|
| 897 |
+
(lm_head): Linear(in_features=3584, out_features=152064, bias=False)
|
| 898 |
+
)
|
| 899 |
+
(time_embedder): FullyShardedDataParallel(
|
| 900 |
+
(_fsdp_wrapped_module): TimestepEmbedder(
|
| 901 |
+
(mlp): Sequential(
|
| 902 |
+
(0): Linear(in_features=256, out_features=3584, bias=True)
|
| 903 |
+
(1): SiLU()
|
| 904 |
+
(2): Linear(in_features=3584, out_features=3584, bias=True)
|
| 905 |
+
)
|
| 906 |
+
)
|
| 907 |
+
)
|
| 908 |
+
(vae2llm): Linear(in_features=64, out_features=3584, bias=True)
|
| 909 |
+
(llm2vae): Linear(in_features=3584, out_features=64, bias=True)
|
| 910 |
+
(latent_pos_embed): FullyShardedDataParallel(
|
| 911 |
+
(_fsdp_wrapped_module): PositionEmbedding()
|
| 912 |
+
)
|
| 913 |
+
(vit_model): SiglipVisionModel(
|
| 914 |
+
(vision_model): FullyShardedDataParallel(
|
| 915 |
+
(_fsdp_wrapped_module): SiglipVisionTransformer(
|
| 916 |
+
(embeddings): SiglipVisionEmbeddings(
|
| 917 |
+
(position_embedding): Embedding(4900, 1152)
|
| 918 |
+
(patch_embedding): Linear(in_features=588, out_features=1152, bias=True)
|
| 919 |
+
)
|
| 920 |
+
(encoder): SiglipEncoder(
|
| 921 |
+
(layers): ModuleList(
|
| 922 |
+
(0-25): 26 x FullyShardedDataParallel(
|
| 923 |
+
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 924 |
+
(_checkpoint_wrapped_module): SiglipEncoderLayer(
|
| 925 |
+
(self_attn): SiglipFlashAttention2(
|
| 926 |
+
(k_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 927 |
+
(v_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 928 |
+
(q_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 929 |
+
(out_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 930 |
+
)
|
| 931 |
+
(layer_norm1): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 932 |
+
(mlp): SiglipMLP(
|
| 933 |
+
(activation_fn): PytorchGELUTanh()
|
| 934 |
+
(fc1): Linear(in_features=1152, out_features=4304, bias=True)
|
| 935 |
+
(fc2): Linear(in_features=4304, out_features=1152, bias=True)
|
| 936 |
+
)
|
| 937 |
+
(layer_norm2): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 938 |
+
)
|
| 939 |
+
)
|
| 940 |
+
)
|
| 941 |
+
)
|
| 942 |
+
)
|
| 943 |
+
(post_layernorm): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 944 |
+
)
|
| 945 |
+
)
|
| 946 |
+
)
|
| 947 |
+
(connector): FullyShardedDataParallel(
|
| 948 |
+
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 949 |
+
(_checkpoint_wrapped_module): MLPconnector(
|
| 950 |
+
(activation_fn): PytorchGELUTanh()
|
| 951 |
+
(fc1): Linear(in_features=1152, out_features=3584, bias=True)
|
| 952 |
+
(fc2): Linear(in_features=3584, out_features=3584, bias=True)
|
| 953 |
+
)
|
| 954 |
+
)
|
| 955 |
+
)
|
| 956 |
+
(vit_pos_embed): FullyShardedDataParallel(
|
| 957 |
+
(_fsdp_wrapped_module): PositionEmbedding()
|
| 958 |
+
)
|
| 959 |
+
)
|
| 960 |
+
)
|
| 961 |
+
_flat_param True
|
| 962 |
+
language_model.model.layers.0._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 963 |
+
language_model.model.layers.1._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 964 |
+
language_model.model.layers.2._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 965 |
+
language_model.model.layers.3._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 966 |
+
language_model.model.layers.4._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 967 |
+
language_model.model.layers.5._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 968 |
+
language_model.model.layers.6._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 969 |
+
language_model.model.layers.7._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 970 |
+
language_model.model.layers.8._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 971 |
+
language_model.model.layers.9._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 972 |
+
language_model.model.layers.10._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 973 |
+
language_model.model.layers.11._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 974 |
+
language_model.model.layers.12._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 975 |
+
language_model.model.layers.13._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 976 |
+
language_model.model.layers.14._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 977 |
+
language_model.model.layers.15._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 978 |
+
language_model.model.layers.16._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 979 |
+
language_model.model.layers.17._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 980 |
+
language_model.model.layers.18._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 981 |
+
language_model.model.layers.19._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 982 |
+
language_model.model.layers.20._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 983 |
+
language_model.model.layers.21._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 984 |
+
language_model.model.layers.22._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 985 |
+
language_model.model.layers.23._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 986 |
+
language_model.model.layers.24._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 987 |
+
language_model.model.layers.25._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 988 |
+
language_model.model.layers.26._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 989 |
+
language_model.model.layers.27._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 990 |
+
time_embedder._fsdp_wrapped_module._flat_param True
|
| 991 |
+
latent_pos_embed._fsdp_wrapped_module._flat_param False
|
| 992 |
+
vit_model.vision_model._fsdp_wrapped_module._flat_param True
|
| 993 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.0._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 994 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.1._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 995 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.2._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 996 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.3._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 997 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.4._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 998 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.5._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 999 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.6._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1000 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.7._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1001 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.8._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1002 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.9._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1003 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.10._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1004 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.11._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1005 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.12._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1006 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.13._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1007 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.14._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1008 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.15._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1009 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.16._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1010 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.17._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1011 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.18._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1012 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.19._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1013 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.20._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1014 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.21._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1015 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.22._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1016 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.23._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1017 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.24._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1018 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.25._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1019 |
+
connector._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 1020 |
+
vit_pos_embed._fsdp_wrapped_module._flat_param False
|
| 1021 |
+
Preparing Dataset vlm_gym_jigsaw_mse_loss_only/vlm_gym_jigsaw_train
|
| 1022 |
+
Preparing Dataset vlm_gym_jigsaw_mse_loss_only/vlm_gym_jigsaw_train
|
| 1023 |
[[34m2026-01-03 11:26:33[39m] (step=0000807) Train Loss mse: 0.0442, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 1024 |
[[34m2026-01-03 11:26:50[39m] (step=0000808) Train Loss mse: 0.0267, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 1025 |
[[34m2026-01-03 11:27:03[39m] (step=0000809) Train Loss mse: 0.0418, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
|
|
|
| 3097 |
[[34m2026-01-03 19:16:05[39m] (step=0002814) Train Loss mse: 0.0356, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 3098 |
[[34m2026-01-03 19:16:18[39m] (step=0002815) Train Loss mse: 0.0276, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3099 |
[[34m2026-01-03 19:16:34[39m] (step=0002816) Train Loss mse: 0.0326, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3100 |
+
[[34m2026-01-03 19:16:48
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3101 |
[[34m2026-01-03 19:22:57[39m] (step=0002844) Train Loss mse: 0.0234, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 3102 |
[[34m2026-01-03 19:23:13[39m] (step=0002845) Train Loss mse: 0.0283, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 3103 |
[[34m2026-01-03 19:23:29[39m] (step=0002846) Train Loss mse: 0.0367, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/config.yaml
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wandb_version: 1
|
| 2 |
+
|
| 3 |
+
_wandb:
|
| 4 |
+
desc: null
|
| 5 |
+
value:
|
| 6 |
+
python_version: 3.11.10
|
| 7 |
+
cli_version: 0.23.1
|
| 8 |
+
framework: huggingface
|
| 9 |
+
huggingface_version: 4.49.0
|
| 10 |
+
is_jupyter_run: false
|
| 11 |
+
is_kaggle_kernel: false
|
| 12 |
+
start_time: 1767517469
|
| 13 |
+
t:
|
| 14 |
+
1:
|
| 15 |
+
- 1
|
| 16 |
+
- 5
|
| 17 |
+
- 11
|
| 18 |
+
- 41
|
| 19 |
+
- 49
|
| 20 |
+
- 53
|
| 21 |
+
- 71
|
| 22 |
+
- 105
|
| 23 |
+
2:
|
| 24 |
+
- 1
|
| 25 |
+
- 5
|
| 26 |
+
- 11
|
| 27 |
+
- 41
|
| 28 |
+
- 49
|
| 29 |
+
- 53
|
| 30 |
+
- 71
|
| 31 |
+
- 105
|
| 32 |
+
3:
|
| 33 |
+
- 4
|
| 34 |
+
- 13
|
| 35 |
+
- 14
|
| 36 |
+
- 37
|
| 37 |
+
- 42
|
| 38 |
+
- 61
|
| 39 |
+
4: 3.11.10
|
| 40 |
+
5: 0.23.1
|
| 41 |
+
6: 4.49.0
|
| 42 |
+
13: linux-x86_64
|
| 43 |
+
e:
|
| 44 |
+
c4f1w52emnh3bkfwabjlnv9ozcfaekz0:
|
| 45 |
+
os: Linux-6.6.93+-x86_64-with-glibc2.35
|
| 46 |
+
python: CPython 3.11.10
|
| 47 |
+
started_at: '2026-01-04T09:04:29.298919Z'
|
| 48 |
+
args:
|
| 49 |
+
- --dataset_config_file
|
| 50 |
+
- ./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml
|
| 51 |
+
- --eval_dataset_config_file
|
| 52 |
+
- ./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml
|
| 53 |
+
- --viz_dataset_config_file
|
| 54 |
+
- ./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml
|
| 55 |
+
- --inference_hash_file
|
| 56 |
+
- /home/clouduser/Code/Github/launch_new/hashes_test_set_v10.json
|
| 57 |
+
- --train_data_dir
|
| 58 |
+
- /home/clouduser/Code/data/gym/jigsaw-swap_v5/train/
|
| 59 |
+
- --train_jsonl_path
|
| 60 |
+
- /home/clouduser/Code/data/gym/jigsaw-swap_v5/train/
|
| 61 |
+
- --eval_data_dir
|
| 62 |
+
- /home/clouduser/Code/data/gym/jigsaw-swap_v5/val/
|
| 63 |
+
- --eval_jsonl_path
|
| 64 |
+
- /home/clouduser/Code/data/gym/jigsaw-swap_v5/val/
|
| 65 |
+
- --model_path
|
| 66 |
+
- /home/clouduser/Code/Models/BAGEL-7B-MoT
|
| 67 |
+
- --layer_module
|
| 68 |
+
- Qwen2MoTDecoderLayer
|
| 69 |
+
- --max_latent_size
|
| 70 |
+
- '64'
|
| 71 |
+
- --resume-from
|
| 72 |
+
- /home/clouduser/Code/Models/BAGEL-7B-MoT
|
| 73 |
+
- --finetune_from_hf
|
| 74 |
+
- 'True'
|
| 75 |
+
- --auto_resume
|
| 76 |
+
- 'False'
|
| 77 |
+
- --resume-model-only
|
| 78 |
+
- 'True'
|
| 79 |
+
- --finetune-from-ema
|
| 80 |
+
- 'True'
|
| 81 |
+
- --log_every
|
| 82 |
+
- '1'
|
| 83 |
+
- --lr
|
| 84 |
+
- 2e-5
|
| 85 |
+
- --warmup_steps
|
| 86 |
+
- '300'
|
| 87 |
+
- --lr_scheduler
|
| 88 |
+
- cosine
|
| 89 |
+
- --num_worker
|
| 90 |
+
- '1'
|
| 91 |
+
- --expected_num_tokens
|
| 92 |
+
- '20000'
|
| 93 |
+
- --max_num_tokens
|
| 94 |
+
- '20000'
|
| 95 |
+
- --max_num_tokens_per_sample
|
| 96 |
+
- '20000'
|
| 97 |
+
- --visual_und
|
| 98 |
+
- 'True'
|
| 99 |
+
- --save_every
|
| 100 |
+
- '2500'
|
| 101 |
+
- --total_steps
|
| 102 |
+
- '5000'
|
| 103 |
+
- --text_cond_dropout_prob
|
| 104 |
+
- '0.0'
|
| 105 |
+
- --vae_cond_dropout_prob
|
| 106 |
+
- '0.0'
|
| 107 |
+
- --vit_cond_dropout_prob
|
| 108 |
+
- '0.0'
|
| 109 |
+
- --checkpoint_dir
|
| 110 |
+
- /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test
|
| 111 |
+
- --wandb_project
|
| 112 |
+
- bagel
|
| 113 |
+
- --wandb_name
|
| 114 |
+
- vlm_gym_jigsaw_one_img_lr2e_5_mse_only
|
| 115 |
+
- --wandb_dir
|
| 116 |
+
- /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test
|
| 117 |
+
- --wandb_offline
|
| 118 |
+
- 'True'
|
| 119 |
+
- --viz_every
|
| 120 |
+
- '10'
|
| 121 |
+
program: /home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py
|
| 122 |
+
code_path: train/pretrain_unified_navit.py
|
| 123 |
+
code_path_local: train/pretrain_unified_navit.py
|
| 124 |
+
git:
|
| 125 |
+
remote_url: https://github.com/para-lost/unified_world_model
|
| 126 |
+
commit: be2c19982b710041da81a85f55c2877ea0e2e2c6
|
| 127 |
+
root: /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test
|
| 128 |
+
host: junyizhang-launch-new-219635706-1-0
|
| 129 |
+
executable: /opt/conda/bin/python3.11
|
| 130 |
+
cpu_count: 48
|
| 131 |
+
cpu_count_logical: 96
|
| 132 |
+
gpu_type: NVIDIA A100-SXM4-80GB
|
| 133 |
+
gpu_count: 8
|
| 134 |
+
disk:
|
| 135 |
+
/:
|
| 136 |
+
total: '1052461830144'
|
| 137 |
+
used: '261623291904'
|
| 138 |
+
memory:
|
| 139 |
+
total: '1437332611072'
|
| 140 |
+
gpu_nvidia:
|
| 141 |
+
- name: NVIDIA A100-SXM4-80GB
|
| 142 |
+
memory_total: '85899345920'
|
| 143 |
+
cuda_cores: 6912
|
| 144 |
+
architecture: Ampere
|
| 145 |
+
uuid: GPU-71d2c6f0-c9e9-2110-f69b-f7fd558363b2
|
| 146 |
+
- name: NVIDIA A100-SXM4-80GB
|
| 147 |
+
memory_total: '85899345920'
|
| 148 |
+
cuda_cores: 6912
|
| 149 |
+
architecture: Ampere
|
| 150 |
+
uuid: GPU-a25620fe-6924-8936-d5a8-9dfb1c7177e8
|
| 151 |
+
- name: NVIDIA A100-SXM4-80GB
|
| 152 |
+
memory_total: '85899345920'
|
| 153 |
+
cuda_cores: 6912
|
| 154 |
+
architecture: Ampere
|
| 155 |
+
uuid: GPU-2b69635d-5f31-ec83-bcde-b1df07b60307
|
| 156 |
+
- name: NVIDIA A100-SXM4-80GB
|
| 157 |
+
memory_total: '85899345920'
|
| 158 |
+
cuda_cores: 6912
|
| 159 |
+
architecture: Ampere
|
| 160 |
+
uuid: GPU-4469aac3-d575-de3d-8715-1c34b68c640b
|
| 161 |
+
- name: NVIDIA A100-SXM4-80GB
|
| 162 |
+
memory_total: '85899345920'
|
| 163 |
+
cuda_cores: 6912
|
| 164 |
+
architecture: Ampere
|
| 165 |
+
uuid: GPU-da768b0d-e500-f726-164e-2e2379616f19
|
| 166 |
+
- name: NVIDIA A100-SXM4-80GB
|
| 167 |
+
memory_total: '85899345920'
|
| 168 |
+
cuda_cores: 6912
|
| 169 |
+
architecture: Ampere
|
| 170 |
+
uuid: GPU-ae036ce5-57c1-a8df-01b2-21cf23bc619b
|
| 171 |
+
- name: NVIDIA A100-SXM4-80GB
|
| 172 |
+
memory_total: '85899345920'
|
| 173 |
+
cuda_cores: 6912
|
| 174 |
+
architecture: Ampere
|
| 175 |
+
uuid: GPU-d1ab738b-49ca-ed1f-6700-5336be458e1f
|
| 176 |
+
- name: NVIDIA A100-SXM4-80GB
|
| 177 |
+
memory_total: '85899345920'
|
| 178 |
+
cuda_cores: 6912
|
| 179 |
+
architecture: Ampere
|
| 180 |
+
uuid: GPU-cb0ff8e1-e17f-38b9-bc14-4dcc9465b322
|
| 181 |
+
cuda_version: '12.2'
|
| 182 |
+
writer_id: c4f1w52emnh3bkfwabjlnv9ozcfaekz0
|
| 183 |
+
visual_gen:
|
| 184 |
+
desc: null
|
| 185 |
+
value: true
|
| 186 |
+
visual_und:
|
| 187 |
+
desc: null
|
| 188 |
+
value: true
|
| 189 |
+
results_dir:
|
| 190 |
+
desc: null
|
| 191 |
+
value: results
|
| 192 |
+
checkpoint_dir:
|
| 193 |
+
desc: null
|
| 194 |
+
value: /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test
|
| 195 |
+
wandb_project:
|
| 196 |
+
desc: null
|
| 197 |
+
value: bagel
|
| 198 |
+
wandb_name:
|
| 199 |
+
desc: null
|
| 200 |
+
value: vlm_gym_jigsaw_one_img_lr2e_5_mse_only
|
| 201 |
+
wandb_runid:
|
| 202 |
+
desc: null
|
| 203 |
+
value: '0'
|
| 204 |
+
wandb_resume:
|
| 205 |
+
desc: null
|
| 206 |
+
value: allow
|
| 207 |
+
wandb_offline:
|
| 208 |
+
desc: null
|
| 209 |
+
value: true
|
| 210 |
+
wandb_dir:
|
| 211 |
+
desc: null
|
| 212 |
+
value: /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test
|
| 213 |
+
global_seed:
|
| 214 |
+
desc: null
|
| 215 |
+
value: 4396
|
| 216 |
+
auto_resume:
|
| 217 |
+
desc: null
|
| 218 |
+
value: false
|
| 219 |
+
resume_from:
|
| 220 |
+
desc: null
|
| 221 |
+
value: /home/clouduser/Code/Models/BAGEL-7B-MoT
|
| 222 |
+
resume_model_only:
|
| 223 |
+
desc: null
|
| 224 |
+
value: true
|
| 225 |
+
finetune_from_ema:
|
| 226 |
+
desc: null
|
| 227 |
+
value: true
|
| 228 |
+
finetune_from_hf:
|
| 229 |
+
desc: null
|
| 230 |
+
value: true
|
| 231 |
+
log_every:
|
| 232 |
+
desc: null
|
| 233 |
+
value: 1
|
| 234 |
+
save_every:
|
| 235 |
+
desc: null
|
| 236 |
+
value: 2500
|
| 237 |
+
total_steps:
|
| 238 |
+
desc: null
|
| 239 |
+
value: 5000
|
| 240 |
+
warmup_steps:
|
| 241 |
+
desc: null
|
| 242 |
+
value: 300
|
| 243 |
+
lr_scheduler:
|
| 244 |
+
desc: null
|
| 245 |
+
value: cosine
|
| 246 |
+
lr:
|
| 247 |
+
desc: null
|
| 248 |
+
value: 2.0e-05
|
| 249 |
+
min_lr:
|
| 250 |
+
desc: null
|
| 251 |
+
value: 1.0e-07
|
| 252 |
+
beta1:
|
| 253 |
+
desc: null
|
| 254 |
+
value: 0.9
|
| 255 |
+
beta2:
|
| 256 |
+
desc: null
|
| 257 |
+
value: 0.95
|
| 258 |
+
eps:
|
| 259 |
+
desc: null
|
| 260 |
+
value: 1.0e-15
|
| 261 |
+
ema:
|
| 262 |
+
desc: null
|
| 263 |
+
value: 0.993
|
| 264 |
+
max_grad_norm:
|
| 265 |
+
desc: null
|
| 266 |
+
value: 1.0
|
| 267 |
+
timestep_shift:
|
| 268 |
+
desc: null
|
| 269 |
+
value: 1.0
|
| 270 |
+
mse_weight:
|
| 271 |
+
desc: null
|
| 272 |
+
value: 1.0
|
| 273 |
+
ce_weight:
|
| 274 |
+
desc: null
|
| 275 |
+
value: 1.0
|
| 276 |
+
ce_loss_reweighting:
|
| 277 |
+
desc: null
|
| 278 |
+
value: false
|
| 279 |
+
expected_num_tokens:
|
| 280 |
+
desc: null
|
| 281 |
+
value: 20000
|
| 282 |
+
num_replicate:
|
| 283 |
+
desc: null
|
| 284 |
+
value: 1
|
| 285 |
+
num_shard:
|
| 286 |
+
desc: null
|
| 287 |
+
value: 8
|
| 288 |
+
sharding_strategy:
|
| 289 |
+
desc: null
|
| 290 |
+
value: HYBRID_SHARD
|
| 291 |
+
backward_prefetch:
|
| 292 |
+
desc: null
|
| 293 |
+
value: BACKWARD_PRE
|
| 294 |
+
cpu_offload:
|
| 295 |
+
desc: null
|
| 296 |
+
value: false
|
| 297 |
+
freeze_llm:
|
| 298 |
+
desc: null
|
| 299 |
+
value: false
|
| 300 |
+
freeze_vit:
|
| 301 |
+
desc: null
|
| 302 |
+
value: false
|
| 303 |
+
freeze_vae:
|
| 304 |
+
desc: null
|
| 305 |
+
value: true
|
| 306 |
+
freeze_und:
|
| 307 |
+
desc: null
|
| 308 |
+
value: false
|
| 309 |
+
copy_init_moe:
|
| 310 |
+
desc: null
|
| 311 |
+
value: true
|
| 312 |
+
use_flex:
|
| 313 |
+
desc: null
|
| 314 |
+
value: false
|
| 315 |
+
eval_every:
|
| 316 |
+
desc: null
|
| 317 |
+
value: 500
|
| 318 |
+
num_eval_batches:
|
| 319 |
+
desc: null
|
| 320 |
+
value: 20
|
| 321 |
+
use_ema_for_eval:
|
| 322 |
+
desc: null
|
| 323 |
+
value: true
|
| 324 |
+
viz_every:
|
| 325 |
+
desc: null
|
| 326 |
+
value: 10
|
| 327 |
+
viz_n:
|
| 328 |
+
desc: null
|
| 329 |
+
value: 8
|
| 330 |
+
viz_outdir:
|
| 331 |
+
desc: null
|
| 332 |
+
value: results/viz
|
| 333 |
+
eval_dataset_config_file:
|
| 334 |
+
desc: null
|
| 335 |
+
value: ./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml
|
| 336 |
+
viz_dataset_config_file:
|
| 337 |
+
desc: null
|
| 338 |
+
value: ./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml
|
| 339 |
+
save_ema_only:
|
| 340 |
+
desc: null
|
| 341 |
+
value: true
|
| 342 |
+
save_optimizer:
|
| 343 |
+
desc: null
|
| 344 |
+
value: false
|
| 345 |
+
model_path:
|
| 346 |
+
desc: null
|
| 347 |
+
value: /home/clouduser/Code/Models/BAGEL-7B-MoT
|
| 348 |
+
llm_path:
|
| 349 |
+
desc: null
|
| 350 |
+
value: hf/Qwen2.5-0.5B-Instruct/
|
| 351 |
+
llm_qk_norm:
|
| 352 |
+
desc: null
|
| 353 |
+
value: true
|
| 354 |
+
tie_word_embeddings:
|
| 355 |
+
desc: null
|
| 356 |
+
value: false
|
| 357 |
+
layer_module:
|
| 358 |
+
desc: null
|
| 359 |
+
value: Qwen2MoTDecoderLayer
|
| 360 |
+
vae_path:
|
| 361 |
+
desc: null
|
| 362 |
+
value: flux/vae/ae.safetensors
|
| 363 |
+
vit_path:
|
| 364 |
+
desc: null
|
| 365 |
+
value: hf/siglip-so400m-14-980-flash-attn2-navit/
|
| 366 |
+
max_latent_size:
|
| 367 |
+
desc: null
|
| 368 |
+
value: 64
|
| 369 |
+
latent_patch_size:
|
| 370 |
+
desc: null
|
| 371 |
+
value: 2
|
| 372 |
+
vit_patch_size:
|
| 373 |
+
desc: null
|
| 374 |
+
value: 14
|
| 375 |
+
vit_max_num_patch_per_side:
|
| 376 |
+
desc: null
|
| 377 |
+
value: 70
|
| 378 |
+
connector_act:
|
| 379 |
+
desc: null
|
| 380 |
+
value: gelu_pytorch_tanh
|
| 381 |
+
interpolate_pos:
|
| 382 |
+
desc: null
|
| 383 |
+
value: false
|
| 384 |
+
vit_select_layer:
|
| 385 |
+
desc: null
|
| 386 |
+
value: -2
|
| 387 |
+
vit_rope:
|
| 388 |
+
desc: null
|
| 389 |
+
value: false
|
| 390 |
+
text_cond_dropout_prob:
|
| 391 |
+
desc: null
|
| 392 |
+
value: 0.0
|
| 393 |
+
vae_cond_dropout_prob:
|
| 394 |
+
desc: null
|
| 395 |
+
value: 0.0
|
| 396 |
+
vit_cond_dropout_prob:
|
| 397 |
+
desc: null
|
| 398 |
+
value: 0.0
|
| 399 |
+
dataset_config_file:
|
| 400 |
+
desc: null
|
| 401 |
+
value: ./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml
|
| 402 |
+
train_data_dir:
|
| 403 |
+
desc: null
|
| 404 |
+
value: /home/clouduser/Code/data/gym/jigsaw-swap_v5/train/
|
| 405 |
+
train_jsonl_path:
|
| 406 |
+
desc: null
|
| 407 |
+
value: /home/clouduser/Code/data/gym/jigsaw-swap_v5/train/
|
| 408 |
+
eval_data_dir:
|
| 409 |
+
desc: null
|
| 410 |
+
value: /home/clouduser/Code/data/gym/jigsaw-swap_v5/val/
|
| 411 |
+
eval_jsonl_path:
|
| 412 |
+
desc: null
|
| 413 |
+
value: /home/clouduser/Code/data/gym/jigsaw-swap_v5/val/
|
| 414 |
+
inference_hash_file:
|
| 415 |
+
desc: null
|
| 416 |
+
value: /home/clouduser/Code/Github/launch_new/hashes_test_set_v10.json
|
| 417 |
+
prefetch_factor:
|
| 418 |
+
desc: null
|
| 419 |
+
value: 2
|
| 420 |
+
num_workers:
|
| 421 |
+
desc: null
|
| 422 |
+
value: 1
|
| 423 |
+
max_num_tokens_per_sample:
|
| 424 |
+
desc: null
|
| 425 |
+
value: 20000
|
| 426 |
+
max_num_tokens:
|
| 427 |
+
desc: null
|
| 428 |
+
value: 20000
|
| 429 |
+
prefer_buffer_before:
|
| 430 |
+
desc: null
|
| 431 |
+
value: 16384
|
| 432 |
+
max_buffer_size:
|
| 433 |
+
desc: null
|
| 434 |
+
value: 50
|
| 435 |
+
data_seed:
|
| 436 |
+
desc: null
|
| 437 |
+
value: 42
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/output.log
ADDED
|
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FullyShardedDataParallel(
|
| 2 |
+
(_fsdp_wrapped_module): Bagel(
|
| 3 |
+
(language_model): Qwen2ForCausalLM(
|
| 4 |
+
(model): Qwen2Model(
|
| 5 |
+
(embed_tokens): Embedding(152064, 3584)
|
| 6 |
+
(layers): ModuleList(
|
| 7 |
+
(0-27): 28 x FullyShardedDataParallel(
|
| 8 |
+
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 9 |
+
(_checkpoint_wrapped_module): Qwen2MoTDecoderLayer(
|
| 10 |
+
(self_attn): PackedAttentionMoT(
|
| 11 |
+
(q_proj): Linear(in_features=3584, out_features=3584, bias=True)
|
| 12 |
+
(k_proj): Linear(in_features=3584, out_features=512, bias=True)
|
| 13 |
+
(v_proj): Linear(in_features=3584, out_features=512, bias=True)
|
| 14 |
+
(o_proj): Linear(in_features=3584, out_features=3584, bias=False)
|
| 15 |
+
(q_norm): Qwen2RMSNorm((128,), eps=1e-06)
|
| 16 |
+
(k_norm): Qwen2RMSNorm((128,), eps=1e-06)
|
| 17 |
+
(q_norm_moe_gen): Qwen2RMSNorm((128,), eps=1e-06)
|
| 18 |
+
(k_norm_moe_gen): Qwen2RMSNorm((128,), eps=1e-06)
|
| 19 |
+
(q_proj_moe_gen): Linear(in_features=3584, out_features=3584, bias=True)
|
| 20 |
+
(k_proj_moe_gen): Linear(in_features=3584, out_features=512, bias=True)
|
| 21 |
+
(v_proj_moe_gen): Linear(in_features=3584, out_features=512, bias=True)
|
| 22 |
+
(o_proj_moe_gen): Linear(in_features=3584, out_features=3584, bias=False)
|
| 23 |
+
)
|
| 24 |
+
(mlp): Qwen2MLP(
|
| 25 |
+
(gate_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 26 |
+
(up_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 27 |
+
(down_proj): Linear(in_features=18944, out_features=3584, bias=False)
|
| 28 |
+
(act_fn): SiLU()
|
| 29 |
+
)
|
| 30 |
+
(mlp_moe_gen): Qwen2MLP(
|
| 31 |
+
(gate_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 32 |
+
(up_proj): Linear(in_features=3584, out_features=18944, bias=False)
|
| 33 |
+
(down_proj): Linear(in_features=18944, out_features=3584, bias=False)
|
| 34 |
+
(act_fn): SiLU()
|
| 35 |
+
)
|
| 36 |
+
(input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 37 |
+
(input_layernorm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 38 |
+
(post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 39 |
+
(post_attention_layernorm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 40 |
+
)
|
| 41 |
+
)
|
| 42 |
+
)
|
| 43 |
+
)
|
| 44 |
+
(norm): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 45 |
+
(norm_moe_gen): Qwen2RMSNorm((3584,), eps=1e-06)
|
| 46 |
+
(rotary_emb): Qwen2RotaryEmbedding()
|
| 47 |
+
)
|
| 48 |
+
(lm_head): Linear(in_features=3584, out_features=152064, bias=False)
|
| 49 |
+
)
|
| 50 |
+
(time_embedder): FullyShardedDataParallel(
|
| 51 |
+
(_fsdp_wrapped_module): TimestepEmbedder(
|
| 52 |
+
(mlp): Sequential(
|
| 53 |
+
(0): Linear(in_features=256, out_features=3584, bias=True)
|
| 54 |
+
(1): SiLU()
|
| 55 |
+
(2): Linear(in_features=3584, out_features=3584, bias=True)
|
| 56 |
+
)
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
(vae2llm): Linear(in_features=64, out_features=3584, bias=True)
|
| 60 |
+
(llm2vae): Linear(in_features=3584, out_features=64, bias=True)
|
| 61 |
+
(latent_pos_embed): FullyShardedDataParallel(
|
| 62 |
+
(_fsdp_wrapped_module): PositionEmbedding()
|
| 63 |
+
)
|
| 64 |
+
(vit_model): SiglipVisionModel(
|
| 65 |
+
(vision_model): FullyShardedDataParallel(
|
| 66 |
+
(_fsdp_wrapped_module): SiglipVisionTransformer(
|
| 67 |
+
(embeddings): SiglipVisionEmbeddings(
|
| 68 |
+
(position_embedding): Embedding(4900, 1152)
|
| 69 |
+
(patch_embedding): Linear(in_features=588, out_features=1152, bias=True)
|
| 70 |
+
)
|
| 71 |
+
(encoder): SiglipEncoder(
|
| 72 |
+
(layers): ModuleList(
|
| 73 |
+
(0-25): 26 x FullyShardedDataParallel(
|
| 74 |
+
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 75 |
+
(_checkpoint_wrapped_module): SiglipEncoderLayer(
|
| 76 |
+
(self_attn): SiglipFlashAttention2(
|
| 77 |
+
(k_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 78 |
+
(v_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 79 |
+
(q_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 80 |
+
(out_proj): Linear(in_features=1152, out_features=1152, bias=True)
|
| 81 |
+
)
|
| 82 |
+
(layer_norm1): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 83 |
+
(mlp): SiglipMLP(
|
| 84 |
+
(activation_fn): PytorchGELUTanh()
|
| 85 |
+
(fc1): Linear(in_features=1152, out_features=4304, bias=True)
|
| 86 |
+
(fc2): Linear(in_features=4304, out_features=1152, bias=True)
|
| 87 |
+
)
|
| 88 |
+
(layer_norm2): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 89 |
+
)
|
| 90 |
+
)
|
| 91 |
+
)
|
| 92 |
+
)
|
| 93 |
+
)
|
| 94 |
+
(post_layernorm): LayerNorm((1152,), eps=1e-06, elementwise_affine=True)
|
| 95 |
+
)
|
| 96 |
+
)
|
| 97 |
+
)
|
| 98 |
+
(connector): FullyShardedDataParallel(
|
| 99 |
+
(_fsdp_wrapped_module): CheckpointWrapper(
|
| 100 |
+
(_checkpoint_wrapped_module): MLPconnector(
|
| 101 |
+
(activation_fn): PytorchGELUTanh()
|
| 102 |
+
(fc1): Linear(in_features=1152, out_features=3584, bias=True)
|
| 103 |
+
(fc2): Linear(in_features=3584, out_features=3584, bias=True)
|
| 104 |
+
)
|
| 105 |
+
)
|
| 106 |
+
)
|
| 107 |
+
(vit_pos_embed): FullyShardedDataParallel(
|
| 108 |
+
(_fsdp_wrapped_module): PositionEmbedding()
|
| 109 |
+
)
|
| 110 |
+
)
|
| 111 |
+
)
|
| 112 |
+
_flat_param True
|
| 113 |
+
language_model.model.layers.0._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 114 |
+
language_model.model.layers.1._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 115 |
+
language_model.model.layers.2._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 116 |
+
language_model.model.layers.3._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 117 |
+
language_model.model.layers.4._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 118 |
+
language_model.model.layers.5._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 119 |
+
language_model.model.layers.6._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 120 |
+
language_model.model.layers.7._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 121 |
+
language_model.model.layers.8._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 122 |
+
language_model.model.layers.9._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 123 |
+
language_model.model.layers.10._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 124 |
+
language_model.model.layers.11._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 125 |
+
language_model.model.layers.12._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 126 |
+
language_model.model.layers.13._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 127 |
+
language_model.model.layers.14._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 128 |
+
language_model.model.layers.15._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 129 |
+
language_model.model.layers.16._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 130 |
+
language_model.model.layers.17._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 131 |
+
language_model.model.layers.18._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 132 |
+
language_model.model.layers.19._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 133 |
+
language_model.model.layers.20._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 134 |
+
language_model.model.layers.21._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 135 |
+
language_model.model.layers.22._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 136 |
+
language_model.model.layers.23._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 137 |
+
language_model.model.layers.24._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 138 |
+
language_model.model.layers.25._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 139 |
+
language_model.model.layers.26._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 140 |
+
language_model.model.layers.27._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 141 |
+
time_embedder._fsdp_wrapped_module._flat_param True
|
| 142 |
+
latent_pos_embed._fsdp_wrapped_module._flat_param False
|
| 143 |
+
vit_model.vision_model._fsdp_wrapped_module._flat_param True
|
| 144 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.0._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 145 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.1._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 146 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.2._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 147 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.3._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 148 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.4._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 149 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.5._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 150 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.6._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 151 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.7._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 152 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.8._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 153 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.9._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 154 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.10._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 155 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.11._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 156 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.12._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 157 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.13._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 158 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.14._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 159 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.15._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 160 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.16._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 161 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.17._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 162 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.18._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 163 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.19._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 164 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.20._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 165 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.21._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 166 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.22._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 167 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.23._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 168 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.24._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 169 |
+
vit_model.vision_model._fsdp_wrapped_module.encoder.layers.25._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 170 |
+
connector._fsdp_wrapped_module._checkpoint_wrapped_module._flat_param True
|
| 171 |
+
vit_pos_embed._fsdp_wrapped_module._flat_param False
|
| 172 |
+
Preparing Dataset vlm_gym_jigsaw_mse_loss_only/vlm_gym_jigsaw_train
|
| 173 |
+
Preparing Dataset vlm_gym_jigsaw_mse_loss_only/vlm_gym_jigsaw_train
|
| 174 |
+
wandb: Detected [huggingface_hub.inference] in use.
|
| 175 |
+
wandb: Use W&B Weave for improved LLM call tracing. Install Weave with `pip install weave` then add `import weave` to the top of your script.
|
| 176 |
+
wandb: For more information, check out the docs at: https://weave-docs.wandb.ai/
|
| 177 |
+
[[34m2026-01-04 09:04:35[39m] Training arguments TrainingArguments(visual_gen=True, visual_und=True, results_dir='results', checkpoint_dir='/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test', wandb_project='bagel', wandb_name='vlm_gym_jigsaw_one_img_lr2e_5_mse_only', wandb_runid='0', wandb_resume='allow', wandb_offline=True, wandb_dir='/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test', global_seed=4396, auto_resume=False, resume_from='/home/clouduser/Code/Models/BAGEL-7B-MoT', resume_model_only=True, finetune_from_ema=True, finetune_from_hf=True, log_every=1, save_every=2500, total_steps=5000, warmup_steps=300, lr_scheduler='cosine', lr=2e-05, min_lr=1e-07, beta1=0.9, beta2=0.95, eps=1e-15, ema=0.993, max_grad_norm=1.0, timestep_shift=1.0, mse_weight=1.0, ce_weight=1.0, ce_loss_reweighting=False, expected_num_tokens=20000, num_replicate=1, num_shard=8, sharding_strategy='HYBRID_SHARD', backward_prefetch='BACKWARD_PRE', cpu_offload=False, freeze_llm=False, freeze_vit=False, freeze_vae=True, freeze_und=False, copy_init_moe=True, use_flex=False, eval_every=500, num_eval_batches=20, use_ema_for_eval=True, viz_every=10, viz_n=8, viz_outdir='results/viz', eval_dataset_config_file='./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', viz_dataset_config_file='./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', save_ema_only=True, save_optimizer=False)
|
| 178 |
+
[[34m2026-01-04 09:04:35[39m] Model arguments ModelArguments(model_path='/home/clouduser/Code/Models/BAGEL-7B-MoT', llm_path='hf/Qwen2.5-0.5B-Instruct/', llm_qk_norm=True, tie_word_embeddings=False, layer_module='Qwen2MoTDecoderLayer', vae_path='flux/vae/ae.safetensors', vit_path='hf/siglip-so400m-14-980-flash-attn2-navit/', max_latent_size=64, latent_patch_size=2, vit_patch_size=14, vit_max_num_patch_per_side=70, connector_act='gelu_pytorch_tanh', interpolate_pos=False, vit_select_layer=-2, vit_rope=False, text_cond_dropout_prob=0.0, vae_cond_dropout_prob=0.0, vit_cond_dropout_prob=0.0)
|
| 179 |
+
[[34m2026-01-04 09:04:35[39m] Data arguments DataArguments(dataset_config_file='./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', train_data_dir='/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/', train_jsonl_path='/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/', eval_data_dir='/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/', eval_jsonl_path='/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/', inference_hash_file='/home/clouduser/Code/Github/launch_new/hashes_test_set_v10.json', prefetch_factor=2, num_workers=1, max_num_tokens_per_sample=20000, max_num_tokens=20000, prefer_buffer_before=16384, max_buffer_size=50, data_seed=42)
|
| 180 |
+
[[34m2026-01-04 09:09:01[39m] Loading checkpoint from /home/clouduser/Code/Models/BAGEL-7B-MoT.
|
| 181 |
+
[[34m2026-01-04 09:09:12[39m] _IncompatibleKeys(missing_keys=['latent_pos_embed.pos_embed'], unexpected_keys=[])
|
| 182 |
+
[[34m2026-01-04 09:09:29[39m] _IncompatibleKeys(missing_keys=['latent_pos_embed.pos_embed'], unexpected_keys=[])
|
| 183 |
+
[[34m2026-01-04 09:10:03[39m] Training for 5000 steps, starting at 0...
|
| 184 |
+
[[34m2026-01-04 09:10:44[39m] (step=0000000) Train Loss mse: 0.0571, Train Loss ce: 0.0000, Train Steps/Sec: 0.02,
|
| 185 |
+
Traceback (most recent call last):
|
| 186 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 187 |
+
outputs = model(
|
| 188 |
+
^^^^^^
|
| 189 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 190 |
+
return self._call_impl(*args, **kwargs)
|
| 191 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 192 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 193 |
+
return forward_call(*args, **kwargs)
|
| 194 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 195 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 151, in forward
|
| 196 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 197 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 198 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 199 |
+
return self._call_impl(*args, **kwargs)
|
| 200 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 201 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 202 |
+
return forward_call(*args, **kwargs)
|
| 203 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 204 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/sparse.py", line 190, in forward
|
| 205 |
+
return F.embedding(
|
| 206 |
+
^^^^^^^^^^^^
|
| 207 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/functional.py", line 2551, in embedding
|
| 208 |
+
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
|
| 209 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 210 |
+
RuntimeError: The tensor has a non-zero number of elements, but its data is not allocated yet.
|
| 211 |
+
If you're using torch.compile/export/fx, it is likely that we are erroneously tracing into a custom kernel. To fix this, please wrap the custom kernel into an opaque custom op. Please see the following for details: https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html
|
| 212 |
+
If you're using Caffe2, Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() to actually allocate memory.
|
| 213 |
+
Traceback (most recent call last):
|
| 214 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 215 |
+
outputs = model(
|
| 216 |
+
^^^^^^
|
| 217 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 218 |
+
return self._call_impl(*args, **kwargs)
|
| 219 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 220 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 221 |
+
return forward_call(*args, **kwargs)
|
| 222 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 223 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 151, in forward
|
| 224 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 225 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 226 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 227 |
+
return self._call_impl(*args, **kwargs)
|
| 228 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 229 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 230 |
+
return forward_call(*args, **kwargs)
|
| 231 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 232 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/sparse.py", line 190, in forward
|
| 233 |
+
return F.embedding(
|
| 234 |
+
^^^^^^^^^^^^
|
| 235 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/functional.py", line 2551, in embedding
|
| 236 |
+
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
|
| 237 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 238 |
+
RuntimeError: The tensor has a non-zero number of elements, but its data is not allocated yet.
|
| 239 |
+
If you're using torch.compile/export/fx, it is likely that we are erroneously tracing into a custom kernel. To fix this, please wrap the custom kernel into an opaque custom op. Please see the following for details: https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html
|
| 240 |
+
If you're using Caffe2, Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() to actually allocate memory.
|
| 241 |
+
Traceback (most recent call last):
|
| 242 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 243 |
+
outputs = model(
|
| 244 |
+
^^^^^^
|
| 245 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 246 |
+
return self._call_impl(*args, **kwargs)
|
| 247 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 248 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 249 |
+
return forward_call(*args, **kwargs)
|
| 250 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 251 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 151, in forward
|
| 252 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 253 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 254 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 255 |
+
return self._call_impl(*args, **kwargs)
|
| 256 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 257 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 258 |
+
return forward_call(*args, **kwargs)
|
| 259 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 260 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/sparse.py", line 190, in forward
|
| 261 |
+
return F.embedding(
|
| 262 |
+
^^^^^^^^^^^^
|
| 263 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/functional.py", line 2551, in embedding
|
| 264 |
+
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
|
| 265 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 266 |
+
RuntimeError: The tensor has a non-zero number of elements, but its data is not allocated yet.
|
| 267 |
+
If you're using torch.compile/export/fx, it is likely that we are erroneously tracing into a custom kernel. To fix this, please wrap the custom kernel into an opaque custom op. Please see the following for details: https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html
|
| 268 |
+
If you're using Caffe2, Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() to actually allocate memory.
|
| 269 |
+
Traceback (most recent call last):
|
| 270 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 271 |
+
outputs = model(
|
| 272 |
+
^^^^^^
|
| 273 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 274 |
+
return self._call_impl(*args, **kwargs)
|
| 275 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 276 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 277 |
+
return forward_call(*args, **kwargs)
|
| 278 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 279 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 151, in forward
|
| 280 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
| 281 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 282 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 283 |
+
return self._call_impl(*args, **kwargs)
|
| 284 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 285 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 286 |
+
return forward_call(*args, **kwargs)
|
| 287 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 288 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/sparse.py", line 190, in forward
|
| 289 |
+
return F.embedding(
|
| 290 |
+
^^^^^^^^^^^^
|
| 291 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/functional.py", line 2551, in embedding
|
| 292 |
+
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
|
| 293 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 294 |
+
RuntimeError: The tensor has a non-zero number of elements, but its data is not allocated yet.
|
| 295 |
+
If you're using torch.compile/export/fx, it is likely that we are erroneously tracing into a custom kernel. To fix this, please wrap the custom kernel into an opaque custom op. Please see the following for details: https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html
|
| 296 |
+
If you're using Caffe2, Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() to actually allocate memory.
|
| 297 |
+
[[34m2026-01-04 09:12:39[39m] (step=0000001) Train Loss mse: 0.0559, Train Loss ce: 0.0000, Train Steps/Sec: 0.01,
|
| 298 |
+
[[34m2026-01-04 09:12:52[39m] (step=0000002) Train Loss mse: 0.0621, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 299 |
+
[[34m2026-01-04 09:13:06[39m] (step=0000003) Train Loss mse: 0.0709, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 300 |
+
[[34m2026-01-04 09:13:19[39m] (step=0000004) Train Loss mse: 0.0585, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 301 |
+
[[34m2026-01-04 09:13:33[39m] (step=0000005) Train Loss mse: 0.0523, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 302 |
+
[[34m2026-01-04 09:13:49[39m] (step=0000006) Train Loss mse: 0.0602, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 303 |
+
[[34m2026-01-04 09:14:03[39m] (step=0000007) Train Loss mse: 0.0612, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 304 |
+
[[34m2026-01-04 09:14:19[39m] (step=0000008) Train Loss mse: 0.0432, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 305 |
+
[[34m2026-01-04 09:14:35[39m] (step=0000009) Train Loss mse: 0.0561, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 306 |
+
[[34m2026-01-04 09:14:47[39m] (step=0000010) Train Loss mse: 0.0673, Train Loss ce: 0.0000, Train Steps/Sec: 0.09,
|
| 307 |
+
Traceback (most recent call last):
|
| 308 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 309 |
+
outputs = model(
|
| 310 |
+
^^^^^^
|
| 311 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 312 |
+
return self._call_impl(*args, **kwargs)
|
| 313 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 314 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 315 |
+
return forward_call(*args, **kwargs)
|
| 316 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 317 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 318 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 319 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 320 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 321 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 322 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 323 |
+
TypeError: 'NoneType' object is not iterable
|
| 324 |
+
Traceback (most recent call last):
|
| 325 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 326 |
+
outputs = model(
|
| 327 |
+
^^^^^^
|
| 328 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 329 |
+
return self._call_impl(*args, **kwargs)
|
| 330 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 331 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 332 |
+
return forward_call(*args, **kwargs)
|
| 333 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 334 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 335 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 336 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 337 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 338 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 339 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 340 |
+
TypeError: 'NoneType' object is not iterable
|
| 341 |
+
Traceback (most recent call last):
|
| 342 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 343 |
+
outputs = model(
|
| 344 |
+
^^^^^^
|
| 345 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 346 |
+
return self._call_impl(*args, **kwargs)
|
| 347 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 348 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 349 |
+
return forward_call(*args, **kwargs)
|
| 350 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 351 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 352 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 353 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 354 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 355 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 356 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 357 |
+
TypeError: 'NoneType' object is not iterable
|
| 358 |
+
Traceback (most recent call last):
|
| 359 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 360 |
+
outputs = model(
|
| 361 |
+
^^^^^^
|
| 362 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 363 |
+
return self._call_impl(*args, **kwargs)
|
| 364 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 365 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 366 |
+
return forward_call(*args, **kwargs)
|
| 367 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 368 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 369 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 370 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 371 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 372 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 373 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 374 |
+
TypeError: 'NoneType' object is not iterable
|
| 375 |
+
[[34m2026-01-04 09:15:16[39m] (step=0000011) Train Loss mse: 0.0475, Train Loss ce: 0.0000, Train Steps/Sec: 0.03,
|
| 376 |
+
[[34m2026-01-04 09:15:29[39m] (step=0000012) Train Loss mse: 0.0573, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 377 |
+
[[34m2026-01-04 09:15:41[39m] (step=0000013) Train Loss mse: 0.0592, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 378 |
+
[[34m2026-01-04 09:15:57[39m] (step=0000014) Train Loss mse: 0.0525, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 379 |
+
[[34m2026-01-04 09:16:11[39m] (step=0000015) Train Loss mse: 0.0574, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 380 |
+
[[34m2026-01-04 09:16:27[39m] (step=0000016) Train Loss mse: 0.0515, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 381 |
+
[[34m2026-01-04 09:16:43[39m] (step=0000017) Train Loss mse: 0.0759, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 382 |
+
[[34m2026-01-04 09:16:56[39m] (step=0000018) Train Loss mse: 0.0802, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 383 |
+
[[34m2026-01-04 09:17:12[39m] (step=0000019) Train Loss mse: 0.0643, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 384 |
+
[[34m2026-01-04 09:17:28[39m] (step=0000020) Train Loss mse: 0.0476, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 385 |
+
Traceback (most recent call last):
|
| 386 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 387 |
+
outputs = model(
|
| 388 |
+
^^^^^^
|
| 389 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 390 |
+
return self._call_impl(*args, **kwargs)
|
| 391 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 392 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 393 |
+
return forward_call(*args, **kwargs)
|
| 394 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 395 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 396 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 397 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 398 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 399 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 400 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 401 |
+
TypeError: 'NoneType' object is not iterable
|
| 402 |
+
Traceback (most recent call last):
|
| 403 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 404 |
+
outputs = model(
|
| 405 |
+
^^^^^^
|
| 406 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 407 |
+
return self._call_impl(*args, **kwargs)
|
| 408 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 409 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 410 |
+
return forward_call(*args, **kwargs)
|
| 411 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 412 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 413 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 414 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 415 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 416 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 417 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 418 |
+
TypeError: 'NoneType' object is not iterable
|
| 419 |
+
Traceback (most recent call last):
|
| 420 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 421 |
+
outputs = model(
|
| 422 |
+
^^^^^^
|
| 423 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 424 |
+
return self._call_impl(*args, **kwargs)
|
| 425 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 426 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 427 |
+
return forward_call(*args, **kwargs)
|
| 428 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 429 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 430 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 431 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 432 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 433 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 434 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 435 |
+
TypeError: 'NoneType' object is not iterable
|
| 436 |
+
Traceback (most recent call last):
|
| 437 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 438 |
+
outputs = model(
|
| 439 |
+
^^^^^^
|
| 440 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 441 |
+
return self._call_impl(*args, **kwargs)
|
| 442 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 443 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 444 |
+
return forward_call(*args, **kwargs)
|
| 445 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 446 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 447 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 448 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 449 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 450 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 451 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 452 |
+
TypeError: 'NoneType' object is not iterable
|
| 453 |
+
[[34m2026-01-04 09:17:58[39m] (step=0000021) Train Loss mse: 0.0642, Train Loss ce: 0.0000, Train Steps/Sec: 0.03,
|
| 454 |
+
[[34m2026-01-04 09:18:11[39m] (step=0000022) Train Loss mse: 0.0536, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 455 |
+
[[34m2026-01-04 09:18:27[39m] (step=0000023) Train Loss mse: 0.0590, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 456 |
+
[[34m2026-01-04 09:18:40[39m] (step=0000024) Train Loss mse: 0.0534, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 457 |
+
[[34m2026-01-04 09:18:56[39m] (step=0000025) Train Loss mse: 0.0469, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 458 |
+
[[34m2026-01-04 09:19:09[39m] (step=0000026) Train Loss mse: 0.0495, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 459 |
+
[[34m2026-01-04 09:19:25[39m] (step=0000027) Train Loss mse: 0.0638, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 460 |
+
[[34m2026-01-04 09:19:38[39m] (step=0000028) Train Loss mse: 0.0685, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 461 |
+
[[34m2026-01-04 09:19:52[39m] (step=0000029) Train Loss mse: 0.0469, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 462 |
+
[[34m2026-01-04 09:20:08[39m] (step=0000030) Train Loss mse: 0.0546, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 463 |
+
Traceback (most recent call last):
|
| 464 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 465 |
+
outputs = model(
|
| 466 |
+
^^^^^^
|
| 467 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 468 |
+
return self._call_impl(*args, **kwargs)
|
| 469 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 470 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 471 |
+
return forward_call(*args, **kwargs)
|
| 472 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 473 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 474 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 475 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 476 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 477 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 478 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 479 |
+
TypeError: 'NoneType' object is not iterable
|
| 480 |
+
Traceback (most recent call last):
|
| 481 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 482 |
+
outputs = model(
|
| 483 |
+
^^^^^^
|
| 484 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 485 |
+
return self._call_impl(*args, **kwargs)
|
| 486 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 487 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 488 |
+
return forward_call(*args, **kwargs)
|
| 489 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 490 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 491 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 492 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 493 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 494 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 495 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 496 |
+
TypeError: 'NoneType' object is not iterable
|
| 497 |
+
Traceback (most recent call last):
|
| 498 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 499 |
+
outputs = model(
|
| 500 |
+
^^^^^^
|
| 501 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 502 |
+
return self._call_impl(*args, **kwargs)
|
| 503 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 504 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 505 |
+
return forward_call(*args, **kwargs)
|
| 506 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 507 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 508 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 509 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 510 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 511 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 512 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 513 |
+
TypeError: 'NoneType' object is not iterable
|
| 514 |
+
Traceback (most recent call last):
|
| 515 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 516 |
+
outputs = model(
|
| 517 |
+
^^^^^^
|
| 518 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 519 |
+
return self._call_impl(*args, **kwargs)
|
| 520 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 521 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 522 |
+
return forward_call(*args, **kwargs)
|
| 523 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 524 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 525 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 526 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 527 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 528 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 529 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 530 |
+
TypeError: 'NoneType' object is not iterable
|
| 531 |
+
[[34m2026-01-04 09:20:40[39m] (step=0000031) Train Loss mse: 0.0437, Train Loss ce: 0.0000, Train Steps/Sec: 0.03,
|
| 532 |
+
[[34m2026-01-04 09:20:53[39m] (step=0000032) Train Loss mse: 0.0544, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 533 |
+
[[34m2026-01-04 09:21:09[39m] (step=0000033) Train Loss mse: 0.0477, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 534 |
+
[[34m2026-01-04 09:21:26[39m] (step=0000034) Train Loss mse: 0.0442, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 535 |
+
[[34m2026-01-04 09:21:39[39m] (step=0000035) Train Loss mse: 0.0571, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 536 |
+
[[34m2026-01-04 09:21:55[39m] (step=0000036) Train Loss mse: 0.0632, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 537 |
+
[[34m2026-01-04 09:22:09[39m] (step=0000037) Train Loss mse: 0.0479, Train Loss ce: 0.0000, Train Steps/Sec: 0.07,
|
| 538 |
+
[[34m2026-01-04 09:22:25[39m] (step=0000038) Train Loss mse: 0.0481, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 539 |
+
[[34m2026-01-04 09:22:41[39m] (step=0000039) Train Loss mse: 0.0573, Train Loss ce: 0.0000, Train Steps/Sec: 0.06,
|
| 540 |
+
[[34m2026-01-04 09:22:53[39m] (step=0000040) Train Loss mse: 0.0544, Train Loss ce: 0.0000, Train Steps/Sec: 0.08,
|
| 541 |
+
Traceback (most recent call last):
|
| 542 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 543 |
+
outputs = model(
|
| 544 |
+
^^^^^^
|
| 545 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 546 |
+
return self._call_impl(*args, **kwargs)
|
| 547 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 548 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 549 |
+
return forward_call(*args, **kwargs)
|
| 550 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 551 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 552 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 553 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 554 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 555 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 556 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 557 |
+
TypeError: 'NoneType' object is not iterable
|
| 558 |
+
Traceback (most recent call last):
|
| 559 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 560 |
+
outputs = model(
|
| 561 |
+
^^^^^^
|
| 562 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 563 |
+
return self._call_impl(*args, **kwargs)
|
| 564 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 565 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 566 |
+
return forward_call(*args, **kwargs)
|
| 567 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 568 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 569 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 570 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 571 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 572 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 573 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 574 |
+
TypeError: 'NoneType' object is not iterable
|
| 575 |
+
Traceback (most recent call last):
|
| 576 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 577 |
+
outputs = model(
|
| 578 |
+
^^^^^^
|
| 579 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 580 |
+
return self._call_impl(*args, **kwargs)
|
| 581 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 582 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 583 |
+
return forward_call(*args, **kwargs)
|
| 584 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 585 |
+
File "/home/clouduser/Code/Github/unified_world_model/modeling/bagel/bagel.py", line 156, in forward
|
| 586 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
| 587 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 588 |
+
File "/home/clouduser/Code/Github/unified_world_model/data/data_utils.py", line 29, in create_sparse_mask
|
| 589 |
+
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
|
| 590 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 591 |
+
TypeError: 'NoneType' object is not iterable
|
| 592 |
+
Traceback (most recent call last):
|
| 593 |
+
File "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", line 713, in dump_visual_viz
|
| 594 |
+
outputs = model(
|
| 595 |
+
^^^^^^
|
| 596 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
|
| 597 |
+
return self._call_impl(*args, **kwargs)
|
| 598 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
| 599 |
+
File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
|
| 600 |
+
return forward_call(*args, **kwargs)
|
| 601 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/wandb-metadata.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"os": "Linux-6.6.93+-x86_64-with-glibc2.35", "python": "CPython 3.11.10", "started_at": "2026-01-04T09:04:29.298919Z", "args": ["--dataset_config_file", "./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml", "--eval_dataset_config_file", "./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml", "--viz_dataset_config_file", "./data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml", "--inference_hash_file", "/home/clouduser/Code/Github/launch_new/hashes_test_set_v10.json", "--train_data_dir", "/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/", "--train_jsonl_path", "/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/", "--eval_data_dir", "/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/", "--eval_jsonl_path", "/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/", "--model_path", "/home/clouduser/Code/Models/BAGEL-7B-MoT", "--layer_module", "Qwen2MoTDecoderLayer", "--max_latent_size", "64", "--resume-from", "/home/clouduser/Code/Models/BAGEL-7B-MoT", "--finetune_from_hf", "True", "--auto_resume", "False", "--resume-model-only", "True", "--finetune-from-ema", "True", "--log_every", "1", "--lr", "2e-5", "--warmup_steps", "300", "--lr_scheduler", "cosine", "--num_worker", "1", "--expected_num_tokens", "20000", "--max_num_tokens", "20000", "--max_num_tokens_per_sample", "20000", "--visual_und", "True", "--save_every", "2500", "--total_steps", "5000", "--text_cond_dropout_prob", "0.0", "--vae_cond_dropout_prob", "0.0", "--vit_cond_dropout_prob", "0.0", "--checkpoint_dir", "/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test", "--wandb_project", "bagel", "--wandb_name", "vlm_gym_jigsaw_one_img_lr2e_5_mse_only", "--wandb_dir", "/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test", "--wandb_offline", "True", "--viz_every", "10"], "program": "/home/clouduser/Code/Github/unified_world_model/train/pretrain_unified_navit.py", "code_path": "train/pretrain_unified_navit.py", "code_path_local": "train/pretrain_unified_navit.py", "git": {"remote_url": "https://github.com/para-lost/unified_world_model", "commit": "be2c19982b710041da81a85f55c2877ea0e2e2c6"}, "root": "/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test", "host": "junyizhang-launch-new-219635706-1-0", "executable": "/opt/conda/bin/python3.11", "cpu_count": 48, "cpu_count_logical": 96, "gpu_type": "NVIDIA A100-SXM4-80GB", "gpu_count": 8, "disk": {"/": {"total": "1052461830144", "used": "261623291904"}}, "memory": {"total": "1437332611072"}, "gpu_nvidia": [{"name": "NVIDIA A100-SXM4-80GB", "memory_total": "85899345920", "cuda_cores": 6912, "architecture": "Ampere", "uuid": "GPU-71d2c6f0-c9e9-2110-f69b-f7fd558363b2"}, {"name": "NVIDIA A100-SXM4-80GB", "memory_total": "85899345920", "cuda_cores": 6912, "architecture": "Ampere", "uuid": "GPU-a25620fe-6924-8936-d5a8-9dfb1c7177e8"}, {"name": "NVIDIA A100-SXM4-80GB", "memory_total": "85899345920", "cuda_cores": 6912, "architecture": "Ampere", "uuid": "GPU-2b69635d-5f31-ec83-bcde-b1df07b60307"}, {"name": "NVIDIA A100-SXM4-80GB", "memory_total": "85899345920", "cuda_cores": 6912, "architecture": "Ampere", "uuid": "GPU-4469aac3-d575-de3d-8715-1c34b68c640b"}, {"name": "NVIDIA A100-SXM4-80GB", "memory_total": "85899345920", "cuda_cores": 6912, "architecture": "Ampere", "uuid": "GPU-da768b0d-e500-f726-164e-2e2379616f19"}, {"name": "NVIDIA A100-SXM4-80GB", "memory_total": "85899345920", "cuda_cores": 6912, "architecture": "Ampere", "uuid": "GPU-ae036ce5-57c1-a8df-01b2-21cf23bc619b"}, {"name": "NVIDIA A100-SXM4-80GB", "memory_total": "85899345920", "cuda_cores": 6912, "architecture": "Ampere", "uuid": "GPU-d1ab738b-49ca-ed1f-6700-5336be458e1f"}, {"name": "NVIDIA A100-SXM4-80GB", "memory_total": "85899345920", "cuda_cores": 6912, "architecture": "Ampere", "uuid": "GPU-cb0ff8e1-e17f-38b9-bc14-4dcc9465b322"}], "cuda_version": "12.2", "writer_id": "c4f1w52emnh3bkfwabjlnv9ozcfaekz0"}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/wandb-summary.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"_runtime": 1103.04216952, "total_samples": 11, "mem_cache": 77354, "_timestamp": 1767518561.3092997, "eval/ce": 0, "mse": 0.05725831538438797, "ce": 0, "mem_allocated": 51190.20703125, "eval/mse": 0.06041467562317848, "_step": 39, "lr": 2.666666666666667e-06, "total_mse_tokens": 51200, "total_ce_tokens": 0, "total_norm": 0.22510729730129242}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-core.log
CHANGED
|
@@ -4,3 +4,4 @@
|
|
| 4 |
{"time":"2026-01-04T09:04:29.745202354Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"1(@)"}
|
| 5 |
{"time":"2026-01-04T09:04:29.757743673Z","level":"INFO","msg":"handleInformInit: received","streamId":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0","id":"1(@)"}
|
| 6 |
{"time":"2026-01-04T09:04:30.242343786Z","level":"INFO","msg":"handleInformInit: stream started","streamId":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0","id":"1(@)"}
|
|
|
|
|
|
| 4 |
{"time":"2026-01-04T09:04:29.745202354Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"1(@)"}
|
| 5 |
{"time":"2026-01-04T09:04:29.757743673Z","level":"INFO","msg":"handleInformInit: received","streamId":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0","id":"1(@)"}
|
| 6 |
{"time":"2026-01-04T09:04:30.242343786Z","level":"INFO","msg":"handleInformInit: stream started","streamId":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0","id":"1(@)"}
|
| 7 |
+
{"time":"2026-01-04T09:28:49.06895492Z","level":"INFO","msg":"server: parent process exited, terminating service process"}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_090429-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9140cc820e3e9fffcb43c8f00e85dd36eaa4870b83cc86639f3359dbdfa6f7fe
|
| 3 |
+
size 491520
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/requirements.txt
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Brotli==1.1.0
|
| 2 |
+
MarkupSafe==3.0.2
|
| 3 |
+
PySocks==1.7.1
|
| 4 |
+
PyYAML==6.0.2
|
| 5 |
+
archspec==0.2.3
|
| 6 |
+
asttokens==2.4.1
|
| 7 |
+
astunparse==1.6.3
|
| 8 |
+
attrs==24.2.0
|
| 9 |
+
beautifulsoup4==4.12.3
|
| 10 |
+
boltons==24.0.0
|
| 11 |
+
certifi==2024.8.30
|
| 12 |
+
chardet==5.2.0
|
| 13 |
+
charset-normalizer==3.4.0
|
| 14 |
+
click==8.1.7
|
| 15 |
+
colorama==0.4.6
|
| 16 |
+
conda==24.9.2
|
| 17 |
+
conda-build==24.9.0
|
| 18 |
+
conda_index==0.5.0
|
| 19 |
+
conda-libmamba-solver==24.9.0
|
| 20 |
+
conda-package-handling==2.4.0
|
| 21 |
+
conda_package_streaming==0.11.0
|
| 22 |
+
decorator==5.1.1
|
| 23 |
+
distro==1.9.0
|
| 24 |
+
dnspython==2.7.0
|
| 25 |
+
exceptiongroup==1.2.2
|
| 26 |
+
executing==2.1.0
|
| 27 |
+
expecttest==0.2.1
|
| 28 |
+
filelock==3.16.1
|
| 29 |
+
frozendict==2.4.6
|
| 30 |
+
fsspec==2024.10.0
|
| 31 |
+
h2==4.1.0
|
| 32 |
+
hpack==4.0.0
|
| 33 |
+
hyperframe==6.0.1
|
| 34 |
+
hypothesis==6.115.5
|
| 35 |
+
idna==3.10
|
| 36 |
+
importlib_resources==6.4.5
|
| 37 |
+
ipython==8.29.0
|
| 38 |
+
jedi==0.19.1
|
| 39 |
+
Jinja2==3.1.4
|
| 40 |
+
jsonpatch==1.33
|
| 41 |
+
jsonpointer==3.0.0
|
| 42 |
+
jsonschema==4.23.0
|
| 43 |
+
jsonschema-specifications==2024.10.1
|
| 44 |
+
libarchive-c==5.1
|
| 45 |
+
libmambapy==1.5.10
|
| 46 |
+
lief==0.14.1
|
| 47 |
+
lintrunner==0.12.5
|
| 48 |
+
mamba==1.5.10
|
| 49 |
+
matplotlib-inline==0.1.7
|
| 50 |
+
menuinst==2.1.2
|
| 51 |
+
more-itertools==10.5.0
|
| 52 |
+
mpmath==1.3.0
|
| 53 |
+
networkx==3.4.2
|
| 54 |
+
ninja==1.11.1.1
|
| 55 |
+
nvidia-cublas-cu12==12.4.5.8
|
| 56 |
+
nvidia-cuda-cupti-cu12==12.4.127
|
| 57 |
+
nvidia-cuda-nvrtc-cu12==12.4.127
|
| 58 |
+
nvidia-cuda-runtime-cu12==12.4.127
|
| 59 |
+
nvidia-cudnn-cu12==9.1.0.70
|
| 60 |
+
nvidia-cufft-cu12==11.2.1.3
|
| 61 |
+
nvidia-curand-cu12==10.3.5.147
|
| 62 |
+
nvidia-cusolver-cu12==11.6.1.9
|
| 63 |
+
nvidia-cusparse-cu12==12.3.1.170
|
| 64 |
+
nvidia-nccl-cu12==2.21.5
|
| 65 |
+
nvidia-nvjitlink-cu12==12.4.127
|
| 66 |
+
nvidia-nvtx-cu12==12.4.127
|
| 67 |
+
optree==0.13.0
|
| 68 |
+
parso==0.8.4
|
| 69 |
+
pexpect==4.9.0
|
| 70 |
+
pickleshare==0.7.5
|
| 71 |
+
pillow==10.2.0
|
| 72 |
+
pkginfo==1.11.2
|
| 73 |
+
pkgutil_resolve_name==1.3.10
|
| 74 |
+
platformdirs==4.3.6
|
| 75 |
+
pluggy==1.5.0
|
| 76 |
+
prompt_toolkit==3.0.48
|
| 77 |
+
psutil==6.1.0
|
| 78 |
+
ptyprocess==0.7.0
|
| 79 |
+
pure_eval==0.2.3
|
| 80 |
+
pycosat==0.6.6
|
| 81 |
+
pycparser==2.22
|
| 82 |
+
Pygments==2.18.0
|
| 83 |
+
python-etcd==0.4.5
|
| 84 |
+
pytz==2024.2
|
| 85 |
+
referencing==0.35.1
|
| 86 |
+
requests==2.32.3
|
| 87 |
+
rpds-py==0.20.0
|
| 88 |
+
ruamel.yaml==0.18.6
|
| 89 |
+
ruamel.yaml.clib==0.2.8
|
| 90 |
+
six==1.16.0
|
| 91 |
+
sortedcontainers==2.4.0
|
| 92 |
+
soupsieve==2.5
|
| 93 |
+
stack-data==0.6.2
|
| 94 |
+
sympy==1.13.1
|
| 95 |
+
torchaudio==2.5.1+cu124
|
| 96 |
+
torchelastic==0.2.2
|
| 97 |
+
tqdm==4.66.5
|
| 98 |
+
traitlets==5.14.3
|
| 99 |
+
triton==3.1.0
|
| 100 |
+
truststore==0.9.2
|
| 101 |
+
types-dataclasses==0.6.6
|
| 102 |
+
urllib3==2.2.3
|
| 103 |
+
wcwidth==0.2.13
|
| 104 |
+
zipp==3.20.2
|
| 105 |
+
zstandard==0.23.0
|
| 106 |
+
numpy==1.24.4
|
| 107 |
+
imgcat==0.6.0
|
| 108 |
+
decord==0.6.0
|
| 109 |
+
flash_attn==2.5.8
|
| 110 |
+
contourpy==1.3.2
|
| 111 |
+
cycler==0.12.1
|
| 112 |
+
fonttools==4.61.1
|
| 113 |
+
huggingface-hub==0.29.1
|
| 114 |
+
kiwisolver==1.4.9
|
| 115 |
+
matplotlib==3.7.0
|
| 116 |
+
opencv-python==4.7.0.72
|
| 117 |
+
pyarrow==11.0.0
|
| 118 |
+
pyparsing==3.2.5
|
| 119 |
+
safetensors==0.4.5
|
| 120 |
+
scipy==1.10.1
|
| 121 |
+
sentencepiece==0.1.99
|
| 122 |
+
torch==2.5.1
|
| 123 |
+
torchvision==0.20.1
|
| 124 |
+
transformers==4.49.0
|
| 125 |
+
pip==25.3
|
| 126 |
+
setuptools==80.9.0
|
| 127 |
+
wheel==0.45.1
|
| 128 |
+
Pebble==5.1.3
|
| 129 |
+
accelerate==1.12.0
|
| 130 |
+
addftool==0.2.13
|
| 131 |
+
aiohappyeyeballs==2.6.1
|
| 132 |
+
aiohttp==3.13.2
|
| 133 |
+
aiohttp-cors==0.8.1
|
| 134 |
+
aiosignal==1.4.0
|
| 135 |
+
airportsdata==20250909
|
| 136 |
+
annotated-doc==0.0.4
|
| 137 |
+
annotated-types==0.7.0
|
| 138 |
+
antlr4-python3-runtime==4.9.3
|
| 139 |
+
bcrypt==5.0.0
|
| 140 |
+
blobfile==3.0.0
|
| 141 |
+
cffi==2.0.0
|
| 142 |
+
cloudpickle==3.1.2
|
| 143 |
+
codetiming==1.4.0
|
| 144 |
+
colorful==0.5.8
|
| 145 |
+
compressed-tensors==0.12.2
|
| 146 |
+
cryptography==46.0.3
|
| 147 |
+
cuda-bindings==13.1.1
|
| 148 |
+
cuda-pathfinder==1.3.3
|
| 149 |
+
cuda-python==13.1.1
|
| 150 |
+
datasets==4.4.1
|
| 151 |
+
Deprecated==1.3.1
|
| 152 |
+
diskcache==5.6.3
|
| 153 |
+
distlib==0.4.0
|
| 154 |
+
docstring_parser==0.17.0
|
| 155 |
+
easydict==1.13
|
| 156 |
+
fabric==3.2.2
|
| 157 |
+
fastapi==0.124.4
|
| 158 |
+
fire==0.7.1
|
| 159 |
+
flashinfer-python==0.2.5
|
| 160 |
+
frozenlist==1.8.0
|
| 161 |
+
gevent==25.9.1
|
| 162 |
+
gitdb==4.0.12
|
| 163 |
+
GitPython==3.1.45
|
| 164 |
+
google-api-core==2.28.1
|
| 165 |
+
google-auth==2.43.0
|
| 166 |
+
google-cloud-aiplatform==1.130.0
|
| 167 |
+
google-cloud-bigquery==3.38.0
|
| 168 |
+
google-cloud-core==2.5.0
|
| 169 |
+
google-cloud-resource-manager==1.15.0
|
| 170 |
+
google-cloud-storage==3.7.0
|
| 171 |
+
google-crc32c==1.7.1
|
| 172 |
+
google-genai==1.55.0
|
| 173 |
+
google-resumable-media==2.8.0
|
| 174 |
+
googleapis-common-protos==1.72.0
|
| 175 |
+
greenlet==3.3.0
|
| 176 |
+
grpc-google-iam-v1==0.14.3
|
| 177 |
+
grpcio==1.76.0
|
| 178 |
+
grpcio-status==1.76.0
|
| 179 |
+
hf_transfer==0.1.9
|
| 180 |
+
hf-xet==1.2.0
|
| 181 |
+
hydra-core==1.3.2
|
| 182 |
+
importlib_metadata==8.7.0
|
| 183 |
+
interegular==0.3.3
|
| 184 |
+
invoke==2.2.1
|
| 185 |
+
jiter==0.12.0
|
| 186 |
+
joblib==1.5.2
|
| 187 |
+
jsonlines==4.0.0
|
| 188 |
+
lark==1.3.1
|
| 189 |
+
latex2sympy2==1.5.4
|
| 190 |
+
latex2sympy2_extended==1.10.2
|
| 191 |
+
libtmux==0.52.1
|
| 192 |
+
llguidance==0.7.30
|
| 193 |
+
loguru==0.7.3
|
| 194 |
+
lxml==6.0.2
|
| 195 |
+
math-verify==0.8.0
|
| 196 |
+
modelscope==1.33.0
|
| 197 |
+
msgpack==1.1.2
|
| 198 |
+
msgspec==0.20.0
|
| 199 |
+
multidict==6.7.0
|
| 200 |
+
multiprocess==0.70.18
|
| 201 |
+
nvidia-cusparselt-cu12==0.6.2
|
| 202 |
+
nvidia-ml-py==13.590.44
|
| 203 |
+
omegaconf==2.3.0
|
| 204 |
+
openai==2.11.0
|
| 205 |
+
opencensus==0.11.4
|
| 206 |
+
opencensus-context==0.1.3
|
| 207 |
+
opentelemetry-api==1.39.1
|
| 208 |
+
opentelemetry-exporter-prometheus==0.60b1
|
| 209 |
+
opentelemetry-proto==1.39.1
|
| 210 |
+
opentelemetry-sdk==1.39.1
|
| 211 |
+
opentelemetry-semantic-conventions==0.60b1
|
| 212 |
+
orjson==3.11.5
|
| 213 |
+
outlines==0.1.11
|
| 214 |
+
outlines_core==0.1.26
|
| 215 |
+
packaging==25.0
|
| 216 |
+
pandas==2.3.3
|
| 217 |
+
parallel-ssh==2.16.0.post1
|
| 218 |
+
paramiko==4.0.0
|
| 219 |
+
partial-json-parser==0.2.1.1.post7
|
| 220 |
+
peft==0.18.0
|
| 221 |
+
propcache==0.4.1
|
| 222 |
+
proto-plus==1.26.1
|
| 223 |
+
protobuf==6.33.2
|
| 224 |
+
py-spy==0.4.1
|
| 225 |
+
pyasn1==0.6.1
|
| 226 |
+
pyasn1_modules==0.4.2
|
| 227 |
+
pybind11==3.0.1
|
| 228 |
+
pycountry==24.6.1
|
| 229 |
+
pycryptodomex==3.23.0
|
| 230 |
+
pydantic==2.12.5
|
| 231 |
+
pydantic_core==2.41.5
|
| 232 |
+
pylatexenc==2.10
|
| 233 |
+
PyNaCl==1.6.1
|
| 234 |
+
pynvml==13.0.1
|
| 235 |
+
python-multipart==0.0.20
|
| 236 |
+
ray==2.52.1
|
| 237 |
+
regex==2025.11.3
|
| 238 |
+
rsa==4.9.1
|
| 239 |
+
scikit-learn==1.8.0
|
| 240 |
+
sentence-transformers==5.2.0
|
| 241 |
+
sentry-sdk==2.47.0
|
| 242 |
+
setproctitle==1.3.7
|
| 243 |
+
sgl-kernel==0.1.4
|
| 244 |
+
sglang==0.4.6.post5
|
| 245 |
+
shapely==2.1.2
|
| 246 |
+
smart_open==7.5.0
|
| 247 |
+
smmap==5.0.2
|
| 248 |
+
sniffio==1.3.1
|
| 249 |
+
soundfile==0.13.1
|
| 250 |
+
ssh2-python==1.2.0.post1
|
| 251 |
+
ssh-python==1.2.0.post1
|
| 252 |
+
starlette==0.50.0
|
| 253 |
+
tabulate==0.9.0
|
| 254 |
+
tenacity==9.1.2
|
| 255 |
+
tensorboardX==2.6.4
|
| 256 |
+
tensordict==0.6.2
|
| 257 |
+
termcolor==3.2.0
|
| 258 |
+
threadpoolctl==3.6.0
|
| 259 |
+
tiktoken==0.12.0
|
| 260 |
+
timeout-decorator==0.5.0
|
| 261 |
+
tmuxp==1.61.0
|
| 262 |
+
tokenizers==0.21.4
|
| 263 |
+
torch_memory_saver==0.0.9
|
| 264 |
+
torchao==0.9.0
|
| 265 |
+
torchdata==0.11.0
|
| 266 |
+
typing-inspection==0.4.2
|
| 267 |
+
uvicorn==0.38.0
|
| 268 |
+
uvloop==0.22.1
|
| 269 |
+
virtualenv==20.35.4
|
| 270 |
+
wandb==0.23.1
|
| 271 |
+
websockets==15.0.1
|
| 272 |
+
word2number==1.1
|
| 273 |
+
wrapt==2.0.1
|
| 274 |
+
xgrammar==0.1.19
|
| 275 |
+
xxhash==3.6.0
|
| 276 |
+
yarl==1.22.0
|
| 277 |
+
zope.event==6.1
|
| 278 |
+
zope.interface==8.1.1
|
| 279 |
+
cachetools==6.2.3
|
| 280 |
+
dill==0.4.0
|
| 281 |
+
inflect==7.5.0
|
| 282 |
+
lazy_loader==0.4
|
| 283 |
+
rp==0.1.1333
|
| 284 |
+
stackprinter==0.2.12
|
| 285 |
+
typeguard==4.4.4
|
| 286 |
+
typing_extensions==4.15.0
|
| 287 |
+
asciinema==2.4.0
|
| 288 |
+
einops==0.8.1
|
| 289 |
+
Send2Trash==1.8.3
|
| 290 |
+
anyio==4.12.0
|
| 291 |
+
argon2-cffi==25.1.0
|
| 292 |
+
argon2-cffi-bindings==25.1.0
|
| 293 |
+
arrow==1.4.0
|
| 294 |
+
async-lru==2.0.5
|
| 295 |
+
babel==2.17.0
|
| 296 |
+
bleach==6.3.0
|
| 297 |
+
comm==0.2.3
|
| 298 |
+
debugpy==1.8.18
|
| 299 |
+
defusedxml==0.7.1
|
| 300 |
+
fastjsonschema==2.21.2
|
| 301 |
+
fqdn==1.5.1
|
| 302 |
+
h11==0.16.0
|
| 303 |
+
httpcore==1.0.9
|
| 304 |
+
httpx==0.28.1
|
| 305 |
+
ipykernel==7.1.0
|
| 306 |
+
isoduration==20.11.0
|
| 307 |
+
json5==0.12.1
|
| 308 |
+
jupyter_client==8.7.0
|
| 309 |
+
jupyter_core==5.9.1
|
| 310 |
+
jupyter-events==0.12.0
|
| 311 |
+
jupyter-lsp==2.3.0
|
| 312 |
+
jupyter_server==2.17.0
|
| 313 |
+
jupyter_server_terminals==0.5.3
|
| 314 |
+
jupyterlab==4.5.0
|
| 315 |
+
jupyterlab_pygments==0.3.0
|
| 316 |
+
jupyterlab_server==2.28.0
|
| 317 |
+
mistune==3.1.4
|
| 318 |
+
nbclient==0.10.2
|
| 319 |
+
nbconvert==7.16.6
|
| 320 |
+
nbformat==5.10.4
|
| 321 |
+
nest-asyncio==1.6.0
|
| 322 |
+
notebook_shim==0.2.4
|
| 323 |
+
overrides==7.7.0
|
| 324 |
+
pandocfilters==1.5.1
|
| 325 |
+
prometheus_client==0.23.1
|
| 326 |
+
python-dateutil==2.9.0.post0
|
| 327 |
+
python-json-logger==4.0.0
|
| 328 |
+
pyzmq==27.1.0
|
| 329 |
+
rfc3339-validator==0.1.4
|
| 330 |
+
rfc3986-validator==0.1.1
|
| 331 |
+
terminado==0.18.1
|
| 332 |
+
tinycss2==1.4.0
|
| 333 |
+
tornado==6.5.3
|
| 334 |
+
tzdata==2025.3
|
| 335 |
+
uri-template==1.3.0
|
| 336 |
+
webcolors==25.10.0
|
| 337 |
+
webencodings==0.5.1
|
| 338 |
+
websocket-client==1.9.0
|
| 339 |
+
autocommand==2.2.2
|
| 340 |
+
backports.tarfile==1.2.0
|
| 341 |
+
importlib_metadata==8.0.0
|
| 342 |
+
inflect==7.3.1
|
| 343 |
+
jaraco.collections==5.1.0
|
| 344 |
+
jaraco.context==5.3.0
|
| 345 |
+
jaraco.functools==4.0.1
|
| 346 |
+
jaraco.text==3.12.1
|
| 347 |
+
more-itertools==10.3.0
|
| 348 |
+
packaging==24.2
|
| 349 |
+
platformdirs==4.2.2
|
| 350 |
+
tomli==2.0.1
|
| 351 |
+
typeguard==4.3.0
|
| 352 |
+
typing_extensions==4.12.2
|
| 353 |
+
wheel==0.45.1
|
| 354 |
+
zipp==3.19.2
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-core.log
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"time":"2026-01-04T09:32:17.157035079Z","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmphkc9n1om/port-20932.txt","pid":20932,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false,"enable-dcgm-profiling":false}
|
| 2 |
+
{"time":"2026-01-04T09:32:17.158915538Z","level":"INFO","msg":"server: will exit if parent process dies","ppid":20932}
|
| 3 |
+
{"time":"2026-01-04T09:32:17.158917928Z","level":"INFO","msg":"server: accepting connections","addr":{"Name":"/tmp/wandb-20932-21162-3167463651/socket","Net":"unix"}}
|
| 4 |
+
{"time":"2026-01-04T09:32:17.342986695Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"1(@)"}
|
| 5 |
+
{"time":"2026-01-04T09:32:17.351333861Z","level":"INFO","msg":"handleInformInit: received","streamId":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0","id":"1(@)"}
|
| 6 |
+
{"time":"2026-01-04T09:32:17.578454587Z","level":"INFO","msg":"handleInformInit: stream started","streamId":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0","id":"1(@)"}
|
| 7 |
+
{"time":"2026-01-04T09:39:28.832808185Z","level":"INFO","msg":"server: parent process exited, terminating service process"}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-internal.log
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"time":"2026-01-04T09:32:17.359914174Z","level":"INFO","msg":"stream: starting","core version":"0.23.1"}
|
| 2 |
+
{"time":"2026-01-04T09:32:17.578184558Z","level":"WARN","msg":"featurechecker: GraphQL client is nil, skipping feature loading"}
|
| 3 |
+
{"time":"2026-01-04T09:32:17.578260453Z","level":"INFO","msg":"stream: created new stream","id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 4 |
+
{"time":"2026-01-04T09:32:17.578444715Z","level":"INFO","msg":"stream: started","id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 5 |
+
{"time":"2026-01-04T09:32:17.578428925Z","level":"INFO","msg":"handler: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 6 |
+
{"time":"2026-01-04T09:32:17.578480061Z","level":"INFO","msg":"writer: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 7 |
+
{"time":"2026-01-04T09:32:17.578493724Z","level":"INFO","msg":"sender: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 8 |
+
{"time":"2026-01-04T09:32:17.579316636Z","level":"WARN","msg":"runupserter: server does not expand metric globs but the x_server_side_expand_glob_metrics setting is set; ignoring"}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug.log
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2026-01-04 09:32:16,949 INFO MainThread:20932 [wandb_setup.py:_flush():80] Current SDK version is 0.23.1
|
| 2 |
+
2026-01-04 09:32:16,949 INFO MainThread:20932 [wandb_setup.py:_flush():80] Configure stats pid to 20932
|
| 3 |
+
2026-01-04 09:32:16,949 INFO MainThread:20932 [wandb_setup.py:_flush():80] Loading settings from /home/clouduser/.config/wandb/settings
|
| 4 |
+
2026-01-04 09:32:16,949 INFO MainThread:20932 [wandb_setup.py:_flush():80] Loading settings from /home/clouduser/Code/Github/unified_world_model/wandb/settings
|
| 5 |
+
2026-01-04 09:32:16,949 INFO MainThread:20932 [wandb_setup.py:_flush():80] Loading settings from environment variables
|
| 6 |
+
2026-01-04 09:32:16,949 INFO MainThread:20932 [wandb_init.py:setup_run_log_directory():714] Logging user logs to /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug.log
|
| 7 |
+
2026-01-04 09:32:16,949 INFO MainThread:20932 [wandb_init.py:setup_run_log_directory():715] Logging internal logs to /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-internal.log
|
| 8 |
+
2026-01-04 09:32:16,949 INFO MainThread:20932 [wandb_init.py:init():841] calling init triggers
|
| 9 |
+
2026-01-04 09:32:16,950 INFO MainThread:20932 [wandb_init.py:init():846] wandb.init called with sweep_config: {}
|
| 10 |
+
config: {'_wandb': {}}
|
| 11 |
+
2026-01-04 09:32:16,950 INFO MainThread:20932 [wandb_init.py:init():889] starting backend
|
| 12 |
+
2026-01-04 09:32:17,342 INFO MainThread:20932 [wandb_init.py:init():892] sending inform_init request
|
| 13 |
+
2026-01-04 09:32:17,349 INFO MainThread:20932 [wandb_init.py:init():900] backend started and connected
|
| 14 |
+
2026-01-04 09:32:17,351 INFO MainThread:20932 [wandb_init.py:init():970] updated telemetry
|
| 15 |
+
2026-01-04 09:32:17,359 INFO MainThread:20932 [wandb_init.py:init():994] communicating run to backend with 90.0 second timeout
|
| 16 |
+
2026-01-04 09:32:17,581 INFO MainThread:20932 [wandb_init.py:init():1041] starting run threads in backend
|
| 17 |
+
2026-01-04 09:32:17,942 INFO MainThread:20932 [wandb_run.py:_console_start():2521] atexit reg
|
| 18 |
+
2026-01-04 09:32:17,942 INFO MainThread:20932 [wandb_run.py:_redirect():2369] redirect: wrap_raw
|
| 19 |
+
2026-01-04 09:32:17,942 INFO MainThread:20932 [wandb_run.py:_redirect():2438] Wrapping output streams.
|
| 20 |
+
2026-01-04 09:32:17,942 INFO MainThread:20932 [wandb_run.py:_redirect():2461] Redirects installed.
|
| 21 |
+
2026-01-04 09:32:17,945 INFO MainThread:20932 [wandb_init.py:init():1081] run started, returning control to user process
|
| 22 |
+
2026-01-04 09:32:17,947 INFO MainThread:20932 [wandb_run.py:_config_callback():1396] config_cb None None {'visual_gen': True, 'visual_und': True, 'results_dir': 'results', 'checkpoint_dir': '/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test', 'wandb_project': 'bagel', 'wandb_name': 'vlm_gym_jigsaw_one_img_lr2e_5_mse_only', 'wandb_runid': '0', 'wandb_resume': 'allow', 'wandb_offline': True, 'wandb_dir': '/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test', 'global_seed': 4396, 'auto_resume': False, 'resume_from': '/home/clouduser/Code/Models/BAGEL-7B-MoT', 'resume_model_only': True, 'finetune_from_ema': True, 'finetune_from_hf': True, 'log_every': 1, 'save_every': 2500, 'total_steps': 5000, 'warmup_steps': 300, 'lr_scheduler': 'cosine', 'lr': 2e-05, 'min_lr': 1e-07, 'beta1': 0.9, 'beta2': 0.95, 'eps': 1e-15, 'ema': 0.993, 'max_grad_norm': 1.0, 'timestep_shift': 1.0, 'mse_weight': 1.0, 'ce_weight': 1.0, 'ce_loss_reweighting': False, 'expected_num_tokens': 20000, 'num_replicate': 1, 'num_shard': 8, 'sharding_strategy': 'HYBRID_SHARD', 'backward_prefetch': 'BACKWARD_PRE', 'cpu_offload': False, 'freeze_llm': False, 'freeze_vit': False, 'freeze_vae': True, 'freeze_und': False, 'copy_init_moe': True, 'use_flex': False, 'eval_every': 500, 'num_eval_batches': 20, 'use_ema_for_eval': True, 'viz_every': 10, 'viz_n': 8, 'viz_outdir': 'results/viz', 'eval_dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'viz_dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'save_ema_only': True, 'save_optimizer': False}
|
| 23 |
+
2026-01-04 09:32:17,948 INFO MainThread:20932 [wandb_run.py:_config_callback():1396] config_cb None None {'model_path': '/home/clouduser/Code/Models/BAGEL-7B-MoT', 'llm_path': 'hf/Qwen2.5-0.5B-Instruct/', 'llm_qk_norm': True, 'tie_word_embeddings': False, 'layer_module': 'Qwen2MoTDecoderLayer', 'vae_path': 'flux/vae/ae.safetensors', 'vit_path': 'hf/siglip-so400m-14-980-flash-attn2-navit/', 'max_latent_size': 64, 'latent_patch_size': 2, 'vit_patch_size': 14, 'vit_max_num_patch_per_side': 70, 'connector_act': 'gelu_pytorch_tanh', 'interpolate_pos': False, 'vit_select_layer': -2, 'vit_rope': False, 'text_cond_dropout_prob': 0.0, 'vae_cond_dropout_prob': 0.0, 'vit_cond_dropout_prob': 0.0}
|
| 24 |
+
2026-01-04 09:32:17,949 INFO MainThread:20932 [wandb_run.py:_config_callback():1396] config_cb None None {'dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'train_data_dir': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/', 'train_jsonl_path': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/', 'eval_data_dir': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/', 'eval_jsonl_path': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/', 'inference_hash_file': '/home/clouduser/Code/Github/launch_new/hashes_test_set_v10.json', 'prefetch_factor': 2, 'num_workers': 1, 'max_num_tokens_per_sample': 20000, 'max_num_tokens': 20000, 'prefer_buffer_before': 16384, 'max_buffer_size': 50, 'data_seed': 42}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_093216-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7cb17e00f6acbbd7e6d5a4de0ff7353f427c0b6a094cae28f28c4fdb6148f7e
|
| 3 |
+
size 131072
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/files/requirements.txt
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Brotli==1.1.0
|
| 2 |
+
MarkupSafe==3.0.2
|
| 3 |
+
PySocks==1.7.1
|
| 4 |
+
PyYAML==6.0.2
|
| 5 |
+
archspec==0.2.3
|
| 6 |
+
asttokens==2.4.1
|
| 7 |
+
astunparse==1.6.3
|
| 8 |
+
attrs==24.2.0
|
| 9 |
+
beautifulsoup4==4.12.3
|
| 10 |
+
boltons==24.0.0
|
| 11 |
+
certifi==2024.8.30
|
| 12 |
+
chardet==5.2.0
|
| 13 |
+
charset-normalizer==3.4.0
|
| 14 |
+
click==8.1.7
|
| 15 |
+
colorama==0.4.6
|
| 16 |
+
conda==24.9.2
|
| 17 |
+
conda-build==24.9.0
|
| 18 |
+
conda_index==0.5.0
|
| 19 |
+
conda-libmamba-solver==24.9.0
|
| 20 |
+
conda-package-handling==2.4.0
|
| 21 |
+
conda_package_streaming==0.11.0
|
| 22 |
+
decorator==5.1.1
|
| 23 |
+
distro==1.9.0
|
| 24 |
+
dnspython==2.7.0
|
| 25 |
+
exceptiongroup==1.2.2
|
| 26 |
+
executing==2.1.0
|
| 27 |
+
expecttest==0.2.1
|
| 28 |
+
filelock==3.16.1
|
| 29 |
+
frozendict==2.4.6
|
| 30 |
+
fsspec==2024.10.0
|
| 31 |
+
h2==4.1.0
|
| 32 |
+
hpack==4.0.0
|
| 33 |
+
hyperframe==6.0.1
|
| 34 |
+
hypothesis==6.115.5
|
| 35 |
+
idna==3.10
|
| 36 |
+
importlib_resources==6.4.5
|
| 37 |
+
ipython==8.29.0
|
| 38 |
+
jedi==0.19.1
|
| 39 |
+
Jinja2==3.1.4
|
| 40 |
+
jsonpatch==1.33
|
| 41 |
+
jsonpointer==3.0.0
|
| 42 |
+
jsonschema==4.23.0
|
| 43 |
+
jsonschema-specifications==2024.10.1
|
| 44 |
+
libarchive-c==5.1
|
| 45 |
+
libmambapy==1.5.10
|
| 46 |
+
lief==0.14.1
|
| 47 |
+
lintrunner==0.12.5
|
| 48 |
+
mamba==1.5.10
|
| 49 |
+
matplotlib-inline==0.1.7
|
| 50 |
+
menuinst==2.1.2
|
| 51 |
+
more-itertools==10.5.0
|
| 52 |
+
mpmath==1.3.0
|
| 53 |
+
networkx==3.4.2
|
| 54 |
+
ninja==1.11.1.1
|
| 55 |
+
nvidia-cublas-cu12==12.4.5.8
|
| 56 |
+
nvidia-cuda-cupti-cu12==12.4.127
|
| 57 |
+
nvidia-cuda-nvrtc-cu12==12.4.127
|
| 58 |
+
nvidia-cuda-runtime-cu12==12.4.127
|
| 59 |
+
nvidia-cudnn-cu12==9.1.0.70
|
| 60 |
+
nvidia-cufft-cu12==11.2.1.3
|
| 61 |
+
nvidia-curand-cu12==10.3.5.147
|
| 62 |
+
nvidia-cusolver-cu12==11.6.1.9
|
| 63 |
+
nvidia-cusparse-cu12==12.3.1.170
|
| 64 |
+
nvidia-nccl-cu12==2.21.5
|
| 65 |
+
nvidia-nvjitlink-cu12==12.4.127
|
| 66 |
+
nvidia-nvtx-cu12==12.4.127
|
| 67 |
+
optree==0.13.0
|
| 68 |
+
parso==0.8.4
|
| 69 |
+
pexpect==4.9.0
|
| 70 |
+
pickleshare==0.7.5
|
| 71 |
+
pillow==10.2.0
|
| 72 |
+
pkginfo==1.11.2
|
| 73 |
+
pkgutil_resolve_name==1.3.10
|
| 74 |
+
platformdirs==4.3.6
|
| 75 |
+
pluggy==1.5.0
|
| 76 |
+
prompt_toolkit==3.0.48
|
| 77 |
+
psutil==6.1.0
|
| 78 |
+
ptyprocess==0.7.0
|
| 79 |
+
pure_eval==0.2.3
|
| 80 |
+
pycosat==0.6.6
|
| 81 |
+
pycparser==2.22
|
| 82 |
+
Pygments==2.18.0
|
| 83 |
+
python-etcd==0.4.5
|
| 84 |
+
pytz==2024.2
|
| 85 |
+
referencing==0.35.1
|
| 86 |
+
requests==2.32.3
|
| 87 |
+
rpds-py==0.20.0
|
| 88 |
+
ruamel.yaml==0.18.6
|
| 89 |
+
ruamel.yaml.clib==0.2.8
|
| 90 |
+
six==1.16.0
|
| 91 |
+
sortedcontainers==2.4.0
|
| 92 |
+
soupsieve==2.5
|
| 93 |
+
stack-data==0.6.2
|
| 94 |
+
sympy==1.13.1
|
| 95 |
+
torchaudio==2.5.1+cu124
|
| 96 |
+
torchelastic==0.2.2
|
| 97 |
+
tqdm==4.66.5
|
| 98 |
+
traitlets==5.14.3
|
| 99 |
+
triton==3.1.0
|
| 100 |
+
truststore==0.9.2
|
| 101 |
+
types-dataclasses==0.6.6
|
| 102 |
+
urllib3==2.2.3
|
| 103 |
+
wcwidth==0.2.13
|
| 104 |
+
zipp==3.20.2
|
| 105 |
+
zstandard==0.23.0
|
| 106 |
+
numpy==1.24.4
|
| 107 |
+
imgcat==0.6.0
|
| 108 |
+
decord==0.6.0
|
| 109 |
+
flash_attn==2.5.8
|
| 110 |
+
contourpy==1.3.2
|
| 111 |
+
cycler==0.12.1
|
| 112 |
+
fonttools==4.61.1
|
| 113 |
+
huggingface-hub==0.29.1
|
| 114 |
+
kiwisolver==1.4.9
|
| 115 |
+
matplotlib==3.7.0
|
| 116 |
+
opencv-python==4.7.0.72
|
| 117 |
+
pyarrow==11.0.0
|
| 118 |
+
pyparsing==3.2.5
|
| 119 |
+
safetensors==0.4.5
|
| 120 |
+
scipy==1.10.1
|
| 121 |
+
sentencepiece==0.1.99
|
| 122 |
+
torch==2.5.1
|
| 123 |
+
torchvision==0.20.1
|
| 124 |
+
transformers==4.49.0
|
| 125 |
+
pip==25.3
|
| 126 |
+
setuptools==80.9.0
|
| 127 |
+
wheel==0.45.1
|
| 128 |
+
Pebble==5.1.3
|
| 129 |
+
accelerate==1.12.0
|
| 130 |
+
addftool==0.2.13
|
| 131 |
+
aiohappyeyeballs==2.6.1
|
| 132 |
+
aiohttp==3.13.2
|
| 133 |
+
aiohttp-cors==0.8.1
|
| 134 |
+
aiosignal==1.4.0
|
| 135 |
+
airportsdata==20250909
|
| 136 |
+
annotated-doc==0.0.4
|
| 137 |
+
annotated-types==0.7.0
|
| 138 |
+
antlr4-python3-runtime==4.9.3
|
| 139 |
+
bcrypt==5.0.0
|
| 140 |
+
blobfile==3.0.0
|
| 141 |
+
cffi==2.0.0
|
| 142 |
+
cloudpickle==3.1.2
|
| 143 |
+
codetiming==1.4.0
|
| 144 |
+
colorful==0.5.8
|
| 145 |
+
compressed-tensors==0.12.2
|
| 146 |
+
cryptography==46.0.3
|
| 147 |
+
cuda-bindings==13.1.1
|
| 148 |
+
cuda-pathfinder==1.3.3
|
| 149 |
+
cuda-python==13.1.1
|
| 150 |
+
datasets==4.4.1
|
| 151 |
+
Deprecated==1.3.1
|
| 152 |
+
diskcache==5.6.3
|
| 153 |
+
distlib==0.4.0
|
| 154 |
+
docstring_parser==0.17.0
|
| 155 |
+
easydict==1.13
|
| 156 |
+
fabric==3.2.2
|
| 157 |
+
fastapi==0.124.4
|
| 158 |
+
fire==0.7.1
|
| 159 |
+
flashinfer-python==0.2.5
|
| 160 |
+
frozenlist==1.8.0
|
| 161 |
+
gevent==25.9.1
|
| 162 |
+
gitdb==4.0.12
|
| 163 |
+
GitPython==3.1.45
|
| 164 |
+
google-api-core==2.28.1
|
| 165 |
+
google-auth==2.43.0
|
| 166 |
+
google-cloud-aiplatform==1.130.0
|
| 167 |
+
google-cloud-bigquery==3.38.0
|
| 168 |
+
google-cloud-core==2.5.0
|
| 169 |
+
google-cloud-resource-manager==1.15.0
|
| 170 |
+
google-cloud-storage==3.7.0
|
| 171 |
+
google-crc32c==1.7.1
|
| 172 |
+
google-genai==1.55.0
|
| 173 |
+
google-resumable-media==2.8.0
|
| 174 |
+
googleapis-common-protos==1.72.0
|
| 175 |
+
greenlet==3.3.0
|
| 176 |
+
grpc-google-iam-v1==0.14.3
|
| 177 |
+
grpcio==1.76.0
|
| 178 |
+
grpcio-status==1.76.0
|
| 179 |
+
hf_transfer==0.1.9
|
| 180 |
+
hf-xet==1.2.0
|
| 181 |
+
hydra-core==1.3.2
|
| 182 |
+
importlib_metadata==8.7.0
|
| 183 |
+
interegular==0.3.3
|
| 184 |
+
invoke==2.2.1
|
| 185 |
+
jiter==0.12.0
|
| 186 |
+
joblib==1.5.2
|
| 187 |
+
jsonlines==4.0.0
|
| 188 |
+
lark==1.3.1
|
| 189 |
+
latex2sympy2==1.5.4
|
| 190 |
+
latex2sympy2_extended==1.10.2
|
| 191 |
+
libtmux==0.52.1
|
| 192 |
+
llguidance==0.7.30
|
| 193 |
+
loguru==0.7.3
|
| 194 |
+
lxml==6.0.2
|
| 195 |
+
math-verify==0.8.0
|
| 196 |
+
modelscope==1.33.0
|
| 197 |
+
msgpack==1.1.2
|
| 198 |
+
msgspec==0.20.0
|
| 199 |
+
multidict==6.7.0
|
| 200 |
+
multiprocess==0.70.18
|
| 201 |
+
nvidia-cusparselt-cu12==0.6.2
|
| 202 |
+
nvidia-ml-py==13.590.44
|
| 203 |
+
omegaconf==2.3.0
|
| 204 |
+
openai==2.11.0
|
| 205 |
+
opencensus==0.11.4
|
| 206 |
+
opencensus-context==0.1.3
|
| 207 |
+
opentelemetry-api==1.39.1
|
| 208 |
+
opentelemetry-exporter-prometheus==0.60b1
|
| 209 |
+
opentelemetry-proto==1.39.1
|
| 210 |
+
opentelemetry-sdk==1.39.1
|
| 211 |
+
opentelemetry-semantic-conventions==0.60b1
|
| 212 |
+
orjson==3.11.5
|
| 213 |
+
outlines==0.1.11
|
| 214 |
+
outlines_core==0.1.26
|
| 215 |
+
packaging==25.0
|
| 216 |
+
pandas==2.3.3
|
| 217 |
+
parallel-ssh==2.16.0.post1
|
| 218 |
+
paramiko==4.0.0
|
| 219 |
+
partial-json-parser==0.2.1.1.post7
|
| 220 |
+
peft==0.18.0
|
| 221 |
+
propcache==0.4.1
|
| 222 |
+
proto-plus==1.26.1
|
| 223 |
+
protobuf==6.33.2
|
| 224 |
+
py-spy==0.4.1
|
| 225 |
+
pyasn1==0.6.1
|
| 226 |
+
pyasn1_modules==0.4.2
|
| 227 |
+
pybind11==3.0.1
|
| 228 |
+
pycountry==24.6.1
|
| 229 |
+
pycryptodomex==3.23.0
|
| 230 |
+
pydantic==2.12.5
|
| 231 |
+
pydantic_core==2.41.5
|
| 232 |
+
pylatexenc==2.10
|
| 233 |
+
PyNaCl==1.6.1
|
| 234 |
+
pynvml==13.0.1
|
| 235 |
+
python-multipart==0.0.20
|
| 236 |
+
ray==2.52.1
|
| 237 |
+
regex==2025.11.3
|
| 238 |
+
rsa==4.9.1
|
| 239 |
+
scikit-learn==1.8.0
|
| 240 |
+
sentence-transformers==5.2.0
|
| 241 |
+
sentry-sdk==2.47.0
|
| 242 |
+
setproctitle==1.3.7
|
| 243 |
+
sgl-kernel==0.1.4
|
| 244 |
+
sglang==0.4.6.post5
|
| 245 |
+
shapely==2.1.2
|
| 246 |
+
smart_open==7.5.0
|
| 247 |
+
smmap==5.0.2
|
| 248 |
+
sniffio==1.3.1
|
| 249 |
+
soundfile==0.13.1
|
| 250 |
+
ssh2-python==1.2.0.post1
|
| 251 |
+
ssh-python==1.2.0.post1
|
| 252 |
+
starlette==0.50.0
|
| 253 |
+
tabulate==0.9.0
|
| 254 |
+
tenacity==9.1.2
|
| 255 |
+
tensorboardX==2.6.4
|
| 256 |
+
tensordict==0.6.2
|
| 257 |
+
termcolor==3.2.0
|
| 258 |
+
threadpoolctl==3.6.0
|
| 259 |
+
tiktoken==0.12.0
|
| 260 |
+
timeout-decorator==0.5.0
|
| 261 |
+
tmuxp==1.61.0
|
| 262 |
+
tokenizers==0.21.4
|
| 263 |
+
torch_memory_saver==0.0.9
|
| 264 |
+
torchao==0.9.0
|
| 265 |
+
torchdata==0.11.0
|
| 266 |
+
typing-inspection==0.4.2
|
| 267 |
+
uvicorn==0.38.0
|
| 268 |
+
uvloop==0.22.1
|
| 269 |
+
virtualenv==20.35.4
|
| 270 |
+
wandb==0.23.1
|
| 271 |
+
websockets==15.0.1
|
| 272 |
+
word2number==1.1
|
| 273 |
+
wrapt==2.0.1
|
| 274 |
+
xgrammar==0.1.19
|
| 275 |
+
xxhash==3.6.0
|
| 276 |
+
yarl==1.22.0
|
| 277 |
+
zope.event==6.1
|
| 278 |
+
zope.interface==8.1.1
|
| 279 |
+
cachetools==6.2.3
|
| 280 |
+
dill==0.4.0
|
| 281 |
+
inflect==7.5.0
|
| 282 |
+
lazy_loader==0.4
|
| 283 |
+
rp==0.1.1333
|
| 284 |
+
stackprinter==0.2.12
|
| 285 |
+
typeguard==4.4.4
|
| 286 |
+
typing_extensions==4.15.0
|
| 287 |
+
asciinema==2.4.0
|
| 288 |
+
einops==0.8.1
|
| 289 |
+
Send2Trash==1.8.3
|
| 290 |
+
anyio==4.12.0
|
| 291 |
+
argon2-cffi==25.1.0
|
| 292 |
+
argon2-cffi-bindings==25.1.0
|
| 293 |
+
arrow==1.4.0
|
| 294 |
+
async-lru==2.0.5
|
| 295 |
+
babel==2.17.0
|
| 296 |
+
bleach==6.3.0
|
| 297 |
+
comm==0.2.3
|
| 298 |
+
debugpy==1.8.18
|
| 299 |
+
defusedxml==0.7.1
|
| 300 |
+
fastjsonschema==2.21.2
|
| 301 |
+
fqdn==1.5.1
|
| 302 |
+
h11==0.16.0
|
| 303 |
+
httpcore==1.0.9
|
| 304 |
+
httpx==0.28.1
|
| 305 |
+
ipykernel==7.1.0
|
| 306 |
+
isoduration==20.11.0
|
| 307 |
+
json5==0.12.1
|
| 308 |
+
jupyter_client==8.7.0
|
| 309 |
+
jupyter_core==5.9.1
|
| 310 |
+
jupyter-events==0.12.0
|
| 311 |
+
jupyter-lsp==2.3.0
|
| 312 |
+
jupyter_server==2.17.0
|
| 313 |
+
jupyter_server_terminals==0.5.3
|
| 314 |
+
jupyterlab==4.5.0
|
| 315 |
+
jupyterlab_pygments==0.3.0
|
| 316 |
+
jupyterlab_server==2.28.0
|
| 317 |
+
mistune==3.1.4
|
| 318 |
+
nbclient==0.10.2
|
| 319 |
+
nbconvert==7.16.6
|
| 320 |
+
nbformat==5.10.4
|
| 321 |
+
nest-asyncio==1.6.0
|
| 322 |
+
notebook_shim==0.2.4
|
| 323 |
+
overrides==7.7.0
|
| 324 |
+
pandocfilters==1.5.1
|
| 325 |
+
prometheus_client==0.23.1
|
| 326 |
+
python-dateutil==2.9.0.post0
|
| 327 |
+
python-json-logger==4.0.0
|
| 328 |
+
pyzmq==27.1.0
|
| 329 |
+
rfc3339-validator==0.1.4
|
| 330 |
+
rfc3986-validator==0.1.1
|
| 331 |
+
terminado==0.18.1
|
| 332 |
+
tinycss2==1.4.0
|
| 333 |
+
tornado==6.5.3
|
| 334 |
+
tzdata==2025.3
|
| 335 |
+
uri-template==1.3.0
|
| 336 |
+
webcolors==25.10.0
|
| 337 |
+
webencodings==0.5.1
|
| 338 |
+
websocket-client==1.9.0
|
| 339 |
+
autocommand==2.2.2
|
| 340 |
+
backports.tarfile==1.2.0
|
| 341 |
+
importlib_metadata==8.0.0
|
| 342 |
+
inflect==7.3.1
|
| 343 |
+
jaraco.collections==5.1.0
|
| 344 |
+
jaraco.context==5.3.0
|
| 345 |
+
jaraco.functools==4.0.1
|
| 346 |
+
jaraco.text==3.12.1
|
| 347 |
+
more-itertools==10.3.0
|
| 348 |
+
packaging==24.2
|
| 349 |
+
platformdirs==4.2.2
|
| 350 |
+
tomli==2.0.1
|
| 351 |
+
typeguard==4.3.0
|
| 352 |
+
typing_extensions==4.12.2
|
| 353 |
+
wheel==0.45.1
|
| 354 |
+
zipp==3.19.2
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-core.log
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"time":"2026-01-04T09:41:58.611687494Z","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmpml8qx73j/port-49730.txt","pid":49730,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false,"enable-dcgm-profiling":false}
|
| 2 |
+
{"time":"2026-01-04T09:41:58.613969345Z","level":"INFO","msg":"server: will exit if parent process dies","ppid":49730}
|
| 3 |
+
{"time":"2026-01-04T09:41:58.613955135Z","level":"INFO","msg":"server: accepting connections","addr":{"Name":"/tmp/wandb-49730-49896-3226128572/socket","Net":"unix"}}
|
| 4 |
+
{"time":"2026-01-04T09:41:58.796729122Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"1(@)"}
|
| 5 |
+
{"time":"2026-01-04T09:41:58.807276343Z","level":"INFO","msg":"handleInformInit: received","streamId":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0","id":"1(@)"}
|
| 6 |
+
{"time":"2026-01-04T09:41:59.539163963Z","level":"INFO","msg":"handleInformInit: stream started","streamId":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0","id":"1(@)"}
|
| 7 |
+
{"time":"2026-01-04T09:48:17.195652917Z","level":"INFO","msg":"server: parent process exited, terminating service process"}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-internal.log
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"time":"2026-01-04T09:41:58.817034119Z","level":"INFO","msg":"stream: starting","core version":"0.23.1"}
|
| 2 |
+
{"time":"2026-01-04T09:41:59.538864599Z","level":"WARN","msg":"featurechecker: GraphQL client is nil, skipping feature loading"}
|
| 3 |
+
{"time":"2026-01-04T09:41:59.538957051Z","level":"INFO","msg":"stream: created new stream","id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 4 |
+
{"time":"2026-01-04T09:41:59.539033043Z","level":"INFO","msg":"handler: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 5 |
+
{"time":"2026-01-04T09:41:59.539155721Z","level":"INFO","msg":"stream: started","id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 6 |
+
{"time":"2026-01-04T09:41:59.539184904Z","level":"INFO","msg":"writer: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 7 |
+
{"time":"2026-01-04T09:41:59.539218617Z","level":"INFO","msg":"sender: started","stream_id":"vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0"}
|
| 8 |
+
{"time":"2026-01-04T09:41:59.539987313Z","level":"WARN","msg":"runupserter: server does not expand metric globs but the x_server_side_expand_glob_metrics setting is set; ignoring"}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug.log
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Current SDK version is 0.23.1
|
| 2 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Configure stats pid to 49730
|
| 3 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Loading settings from /home/clouduser/.config/wandb/settings
|
| 4 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Loading settings from /home/clouduser/Code/Github/unified_world_model/wandb/settings
|
| 5 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_setup.py:_flush():80] Loading settings from environment variables
|
| 6 |
+
2026-01-04 09:41:58,406 INFO MainThread:49730 [wandb_init.py:setup_run_log_directory():714] Logging user logs to /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug.log
|
| 7 |
+
2026-01-04 09:41:58,407 INFO MainThread:49730 [wandb_init.py:setup_run_log_directory():715] Logging internal logs to /dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/logs/debug-internal.log
|
| 8 |
+
2026-01-04 09:41:58,407 INFO MainThread:49730 [wandb_init.py:init():841] calling init triggers
|
| 9 |
+
2026-01-04 09:41:58,407 INFO MainThread:49730 [wandb_init.py:init():846] wandb.init called with sweep_config: {}
|
| 10 |
+
config: {'_wandb': {}}
|
| 11 |
+
2026-01-04 09:41:58,407 INFO MainThread:49730 [wandb_init.py:init():889] starting backend
|
| 12 |
+
2026-01-04 09:41:58,797 INFO MainThread:49730 [wandb_init.py:init():892] sending inform_init request
|
| 13 |
+
2026-01-04 09:41:58,805 INFO MainThread:49730 [wandb_init.py:init():900] backend started and connected
|
| 14 |
+
2026-01-04 09:41:58,807 INFO MainThread:49730 [wandb_init.py:init():970] updated telemetry
|
| 15 |
+
2026-01-04 09:41:58,816 INFO MainThread:49730 [wandb_init.py:init():994] communicating run to backend with 90.0 second timeout
|
| 16 |
+
2026-01-04 09:41:59,542 INFO MainThread:49730 [wandb_init.py:init():1041] starting run threads in backend
|
| 17 |
+
2026-01-04 09:41:59,917 INFO MainThread:49730 [wandb_run.py:_console_start():2521] atexit reg
|
| 18 |
+
2026-01-04 09:41:59,918 INFO MainThread:49730 [wandb_run.py:_redirect():2369] redirect: wrap_raw
|
| 19 |
+
2026-01-04 09:41:59,918 INFO MainThread:49730 [wandb_run.py:_redirect():2438] Wrapping output streams.
|
| 20 |
+
2026-01-04 09:41:59,918 INFO MainThread:49730 [wandb_run.py:_redirect():2461] Redirects installed.
|
| 21 |
+
2026-01-04 09:41:59,921 INFO MainThread:49730 [wandb_init.py:init():1081] run started, returning control to user process
|
| 22 |
+
2026-01-04 09:41:59,922 INFO MainThread:49730 [wandb_run.py:_config_callback():1396] config_cb None None {'visual_gen': True, 'visual_und': True, 'results_dir': 'results', 'checkpoint_dir': '/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test', 'wandb_project': 'bagel', 'wandb_name': 'vlm_gym_jigsaw_one_img_lr2e_5_mse_only', 'wandb_runid': '0', 'wandb_resume': 'allow', 'wandb_offline': True, 'wandb_dir': '/dev/shm/models/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test', 'global_seed': 4396, 'auto_resume': False, 'resume_from': '/home/clouduser/Code/Models/BAGEL-7B-MoT', 'resume_model_only': True, 'finetune_from_ema': True, 'finetune_from_hf': True, 'log_every': 1, 'save_every': 2500, 'total_steps': 5000, 'warmup_steps': 300, 'lr_scheduler': 'cosine', 'lr': 2e-05, 'min_lr': 1e-07, 'beta1': 0.9, 'beta2': 0.95, 'eps': 1e-15, 'ema': 0.993, 'max_grad_norm': 1.0, 'timestep_shift': 1.0, 'mse_weight': 1.0, 'ce_weight': 1.0, 'ce_loss_reweighting': False, 'expected_num_tokens': 20000, 'num_replicate': 1, 'num_shard': 8, 'sharding_strategy': 'HYBRID_SHARD', 'backward_prefetch': 'BACKWARD_PRE', 'cpu_offload': False, 'freeze_llm': False, 'freeze_vit': False, 'freeze_vae': True, 'freeze_und': False, 'copy_init_moe': True, 'use_flex': False, 'eval_every': 500, 'num_eval_batches': 20, 'use_ema_for_eval': True, 'viz_every': 10, 'viz_n': 8, 'viz_outdir': 'results/viz', 'eval_dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'viz_dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'save_ema_only': True, 'save_optimizer': False}
|
| 23 |
+
2026-01-04 09:41:59,923 INFO MainThread:49730 [wandb_run.py:_config_callback():1396] config_cb None None {'model_path': '/home/clouduser/Code/Models/BAGEL-7B-MoT', 'llm_path': 'hf/Qwen2.5-0.5B-Instruct/', 'llm_qk_norm': True, 'tie_word_embeddings': False, 'layer_module': 'Qwen2MoTDecoderLayer', 'vae_path': 'flux/vae/ae.safetensors', 'vit_path': 'hf/siglip-so400m-14-980-flash-attn2-navit/', 'max_latent_size': 64, 'latent_patch_size': 2, 'vit_patch_size': 14, 'vit_max_num_patch_per_side': 70, 'connector_act': 'gelu_pytorch_tanh', 'interpolate_pos': False, 'vit_select_layer': -2, 'vit_rope': False, 'text_cond_dropout_prob': 0.0, 'vae_cond_dropout_prob': 0.0, 'vit_cond_dropout_prob': 0.0}
|
| 24 |
+
2026-01-04 09:41:59,924 INFO MainThread:49730 [wandb_run.py:_config_callback():1396] config_cb None None {'dataset_config_file': './data/configs/vlm_gym_jigsaw_train_mseloss_only.yaml', 'train_data_dir': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/', 'train_jsonl_path': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/train/', 'eval_data_dir': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/', 'eval_jsonl_path': '/home/clouduser/Code/data/gym/jigsaw-swap_v5/val/', 'inference_hash_file': '/home/clouduser/Code/Github/launch_new/hashes_test_set_v10.json', 'prefetch_factor': 2, 'num_workers': 1, 'max_num_tokens_per_sample': 20000, 'max_num_tokens': 20000, 'prefer_buffer_before': 16384, 'max_buffer_size': 50, 'data_seed': 42}
|
checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/checkpoints_vlm_gym_jigsaw_one_image_lr2e_5_mse_only_test/wandb/offline-run-20260104_094158-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0/run-vlm_gym_jigsaw_one_img_lr2e_5_mse_only-run0.wandb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fea8db2c722c608b691a06b3e692272a70eb2fb6d6fdaddefd3d9b5b178335ba
|
| 3 |
+
size 131072
|