amphora commited on
Commit
6538c10
·
verified ·
1 Parent(s): 3bb0764

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +218 -187
README.md CHANGED
@@ -3,197 +3,228 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
 
 
 
 
 
 
 
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags: []
4
  ---
5
 
6
+ # KO-REAson
7
 
8
+ **KO-REAson** is a series of Korean-centric reasoning language models developed in collaboration with OneLineAI, KISTI, HAE-RAE and ORACLE.
9
 
10
+ We use the **Language-Mixed Chain-of-Thought (CoT)** approach, which allows the model to alternate between English and Korean during the “Think” stage of reasoning, preserving key Korean terms while leveraging English for logical scaffolding.
11
 
12
+ Top-performing models of our series [KO-REAson-AX3_1-7B-0831](https://huggingface.co/KoReason/KO-REASon-AX3_1-7B-0831) and [KO-REAson-7B-Q2_5-0831](https://huggingface.co/KoReason/KO-REASon-7B-Q2_5-0831) show performance comparable to models trained on closed-source datasets such as Exaone-Deep-7.8B.
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ <p align="left">
16
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/60d3e619b8448e1785bbda2a/CaHtUra_lWZmg04d-QNtm.png"
17
+ alt="Model Comparison" width="750"/>
18
+ <br>
19
+ <em style="display:inline-block; max-width:750px; text-align:cener; white-space:normal; word-wrap:break-word; line-height:1.5;">
20
+ <b>Left:</b> Average performance (Held-out-Ko) of open models trained on closed or open data;
21
+ our models are highlighted in green.
22
+ </em>
23
+ </p>
24
 
25
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ The **KO-REAson-0831** family comes in six variants based on the base model used.
28
+
29
+ | Model (link) | Base | Notes |
30
+ | -------------------------------------------------------------------------------------------- | -------------------- | --------------------------- |
31
+ | [KO-REAson-L3_1-8B-0831](https://huggingface.co/KoReason/KO-REASon-L3_1-8B-0831) | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) | `L3_1` → Llama-3.1-8B |
32
+ | [KO-REAson-KL3_1-8B-0831](https://huggingface.co/KoReason/KO-REASon-KL3_1-8B-0831) | [Koni-Llama-3.1-8B](https://huggingface.co/KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024) | `KL3_1` → Koni-Llama-3.1-8B |
33
+ | [KO-REAson-G3-4B-0831](https://huggingface.co/KoReason/KO-REASon-G3-4B-0831) | [Gemma-3 4B](https://huggingface.co/google/gemma-3-4b-it) | `G3` → Gemma-3-4B |
34
+ | [KO-REAson-AX3_1-7B-0831](https://huggingface.co/KoReason/KO-REASon-AX3_1-7B-0831) | [A.X.-3.1-Light (≈7B)](https://huggingface.co/skt/A.X-3.1-Light) | `AX3_1` → A.X.-3.1-Light |
35
+ | [KO-REAson-K2505_8B-0831](https://huggingface.co/KoReason/KO-REASon-K2505_8B-0831) | [Kanana-2505 (8B)](https://huggingface.co/kakaocorp/kanana-1.5-8b-instruct-2505) | `K2505` → Kanana-2505 |
36
+ | [KO-REAson-7B-Q2_5-0831](https://huggingface.co/KoReason/KO-REASon-7B-Q2_5-0831) | [Qwen-2.5 (7B)](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | `Q2_5` → Qwen-2.5 |
37
+
38
+
39
+
40
+ # Performance
41
+
42
+ **Evaluation Datasets**
43
+
44
+ The model's performance was evaluated across a total of 11 benchmarks, and the evaluation suite is divided into two parts: (You can check these benchmarks in [HAERAE-HUB/KoSimpleEval](https://huggingface.co/datasets/HAERAE-HUB/KoSimpleEval))
45
+
46
+ - **Held-in**: This set of benchmarks is used for routine monitoring of the model's performance during the training and ablation study phases.
47
+ - **Held-out**: This set is used only once to evaluate the final model after all training and ablations are complete.
48
+
49
+ This separation is designed to prevent inadvertent overfitting to the benchmarks during the iterative training process and to provide a more accurate measure of the model's generalization capabilities.
50
+
51
+ |**Category**|**Held-in**|**Held-out**|
52
+ |---|---|---|
53
+ |**General Knowledge**|KMMLU-Redux|KMMLU-HARD, KMMLU-Pro|
54
+ |**Reasoning**|MCLM|KSM, GPQA, AIME2024, AIME2025|
55
+ |**Korean-specific**|HAE-RAE Bench|CLIcK, KoBALT-700|
56
+
57
+
58
+ **Comparison with models trained on public datasets**
59
+
60
+ <table>
61
+ <thead>
62
+ <tr>
63
+ <th>Models</th>
64
+ <th># Instances</th>
65
+ <th>Methodology</th>
66
+ <th>Held-Out (Ko)</th>
67
+ <th>Held-Out (En)</th>
68
+ <th>Total</th>
69
+ </tr>
70
+ </thead>
71
+ <tbody>
72
+ <tr>
73
+ <th>KO-REASon-AX3_1-7B-0831(Ours)</th>
74
+ <td>260k</td>
75
+ <td>SFT</td>
76
+ <td><b>44.6</b></td>
77
+ <td>41.2</td>
78
+ <td><u>43.3</u></td>
79
+ </tr>
80
+ <tr>
81
+ <th>KO-REASon-7B-Q2_5-0831(Ours)</th>
82
+ <td>260k</td>
83
+ <td>SFT</td>
84
+ <td><b>45.10</b></td>
85
+ <td>38.75</td>
86
+ <td><u>49.95</u></td>
87
+ </tr>
88
+ <tr>
89
+ <td colspan="6" style="text-align:center; font-weight:bold;">Open Recipe (En)</td>
90
+ </tr>
91
+ <tr>
92
+ <th>OpenThinker3-7B</th>
93
+ <td>1.2M</td>
94
+ <td>SFT</td>
95
+ <td>33.6</td>
96
+ <td><b>55.5</b></td>
97
+ <td>41.8</td>
98
+ </tr>
99
+ <tr>
100
+ <th>s1.1-7B</th>
101
+ <td>1k</td>
102
+ <td>SFT</td>
103
+ <td>35.6</td>
104
+ <td>23.4</td>
105
+ <td>31.1</td>
106
+ </tr>
107
+ <tr>
108
+ <th>Llama-3.1-Nemotron-Nano-8B-v1</th>
109
+ <td>&gt;3M</td>
110
+ <td>SFT &amp; RL</td>
111
+ <td>27.0</td>
112
+ <td>44.1</td>
113
+ <td>33.4</td>
114
+ </tr>
115
+ <tr>
116
+ <td colspan="6" style="text-align:center; font-weight:bold;">Open Recipe (Ko)</td>
117
+ </tr>
118
+ <tr>
119
+ <th>Ko-R1-14B</th>
120
+ <td>45k</td>
121
+ <td>SFT</td>
122
+ <td><u>43.7</u></td>
123
+ <td><u>46.3</u></td>
124
+ <td><b>44.7</b></td>
125
+ </tr>
126
+ <tr>
127
+ <th>Ko-R1-7B</th>
128
+ <td>45k</td>
129
+ <td>SFT</td>
130
+ <td>27.3</td>
131
+ <td>36.1</td>
132
+ <td>30.6</td>
133
+ </tr>
134
+ <tr>
135
+ <th>LLaMa-3.1-Ko-Reasoning-8B</th>
136
+ <td>63k</td>
137
+ <td>SFT</td>
138
+ <td>17.7</td>
139
+ <td>7.7</td>
140
+ <td>14.0</td>
141
+ </tr>
142
+ </tbody>
143
+ </table>
144
+
145
+ **Held-out benchmark performance**
146
+
147
+ <table border="1" cellspacing="0" cellpadding="6">
148
+ <thead>
149
+ <tr>
150
+ <th rowspan="2">Model</th>
151
+ <th rowspan="2">Model Size</th>
152
+ <th colspan="2">General</th>
153
+ <th colspan="4">Reasoning</th>
154
+ <th colspan="2">Korean-Specific</th>
155
+ <th rowspan="2">Average<br>(Held-out)</th>
156
+ <th rowspan="2">Average<br>(Held-out-Ko)</th>
157
+ </tr>
158
+ <tr>
159
+ <th>KMMLU-HARD</th>
160
+ <th>KMMLU-Pro</th>
161
+ <th>KSM</th>
162
+ <th>AIME 2024</th>
163
+ <th>AIME 2025</th>
164
+ <th>GPQA</th>
165
+ <th>CLiCK</th>
166
+ <th>KoBALT-700</th>
167
+ </tr>
168
+ </thead>
169
+ <tbody>
170
+ <tr>
171
+ <td><b>Llama-3.1-Nemotron-Nano-8B</b></td>
172
+ <td>8.03</td><td>21.47</td><td>22.89</td><td>47.06</td><td>56.67</td><td>43.33</td><td>32.32</td><td>34.54</td><td>9.29</td><td>33.45</td><td>27.05</td>
173
+ </tr>
174
+ <tr>
175
+ <td><b>Llama-3.1-Korean-Reasoning-8B-Instruct</b></td>
176
+ <td>8.03</td><td>14.91</td><td>21.72</td><td>6.09</td><td>0.00</td><td>0.00</td><td>23.23</td><td>39.65</td><td>6.14</td><td>13.97</td><td>17.70</td>
177
+ </tr>
178
+ <tr>
179
+ <td><b>EXAONE-Deep-7.8B</b></td>
180
+ <td>7.82</td><td><u>40.96</u></td><td>37.35</td><td><b>70.80</b></td><td><b>70.00</b></td><td><b>63.33</b></td><td><b>64.65</b></td><td>54.24</td><td>18.86</td><td><b>52.52</b></td><td>44.44</td>
181
+ </tr>
182
+ <tr>
183
+ <td><b>DeepSeek-R1-Distill-Qwen-7B</b></td>
184
+ <td>7.62</td><td>0.00</td><td>23.00</td><td>56.09</td><td>60.00</td><td>40.00</td><td>43.43</td><td>0.00</td><td>8.29</td><td>28.85</td><td>17.48</td>
185
+ </tr>
186
+ <tr>
187
+ <td><b>DeepSeek-R1-Distill-Llama-8B</b></td>
188
+ <td>8.03</td><td>23.22</td><td>26.26</td><td>29.97</td><td>33.33</td><td>20.00</td><td><U>46.46</u></td><td>39.05</td><td>13.29</td><td>28.95</td><td>26.36</td>
189
+ </tr>
190
+ <tr>
191
+ <td><b>s1.1-7B</b></td>
192
+ <td>7.62</td><td>31.16</td><td><u>37.70</u></td><td>30.60</td><td>16.67</td><td>23.33</td><td>30.30</td><td><u>56.84</u></td><td><u>21.86</u></td><td>31.06</td><td>35.63</td>
193
+ </tr>
194
+ <tr>
195
+ <td><b>OpenThinker3-7B</b></td>
196
+ <td>7.62</td><td>30.31</td><td>26.26</td><td><u>63.59</u></td><td><u>66.67</u></td><td><u>53.33</u></td><td><u>46.46</u></td><td>47.69</td><td>10.14</td><td>35.63</td><td>30.60</td>
197
+ </tr>
198
+ <tr>
199
+ <td><b>Ko-R1-7B</b></td>
200
+ <td>7.61</td><td>28.46</td><td>19.31</td><td>51.61</td><td>46.67</td><td>33.33</td><td>28.28</td><td>32.48</td><td>4.71</td><td>30.61</td><td>27.31</td>
201
+ </tr>
202
+ <tr>
203
+ <td><b>KO-REASon-AX3_1-7B-0831</b></td>
204
+ <td>7.26</td><td>45.57</td><td>38.13</td><td>52.80</td><td>53.33</td><td>33.33</td><td>36.87</td><td><b>62.86</b></td><td>23.43</td><td><u>43.29</u></td><td><u>44.56</u></td>
205
+ </tr>
206
+ <tr>
207
+ <td><b>KO-REASon-7B-Q2_5-0831</b></td>
208
+ <td>7.26</td><td><b>46.81</b></td><td><b>44.93</b></td><td>48.11</td><td>43.33</td><td>30.00</td><td>42.93</td><td>60.65</td><td><b>25.00</b></td><td>42.72</td><td><b>45.10</b></td>
209
+ </tr>
210
+ </tbody>
211
+ </table>
212
+
213
+
214
+ ## Citation
215
+ ```
216
+ The paper will be released soon!
217
+ ```
218
+
219
+
220
+ ## Contact
221
+
222
+ For any questions contact us via the following email :)
223
+
224
+ ```
225
226
+ ```
227
+
228
+
229
+ ## Acknowlegments
230
+ This research was supported by the Korea Institute of Science and Technology Information (KISTI) (No.(KISTI) K25L1M1C1), aimed at developing KONI (KISTI Open Neural Intelligence), a large language model specialized in science and technology.