Update README.md
Browse files
README.md
CHANGED
|
@@ -3,197 +3,228 @@ library_name: transformers
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
## Model Details
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
tags: []
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# KO-REAson
|
| 7 |
|
| 8 |
+
**KO-REAson** is a series of Korean-centric reasoning language models developed in collaboration with OneLineAI, KISTI, HAE-RAE and ORACLE.
|
| 9 |
|
| 10 |
+
We use the **Language-Mixed Chain-of-Thought (CoT)** approach, which allows the model to alternate between English and Korean during the “Think” stage of reasoning, preserving key Korean terms while leveraging English for logical scaffolding.
|
| 11 |
|
| 12 |
+
Top-performing models of our series [KO-REAson-AX3_1-7B-0831](https://huggingface.co/KoReason/KO-REASon-AX3_1-7B-0831) and [KO-REAson-7B-Q2_5-0831](https://huggingface.co/KoReason/KO-REASon-7B-Q2_5-0831) show performance comparable to models trained on closed-source datasets such as Exaone-Deep-7.8B.
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
<p align="left">
|
| 16 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/60d3e619b8448e1785bbda2a/CaHtUra_lWZmg04d-QNtm.png"
|
| 17 |
+
alt="Model Comparison" width="750"/>
|
| 18 |
+
<br>
|
| 19 |
+
<em style="display:inline-block; max-width:750px; text-align:cener; white-space:normal; word-wrap:break-word; line-height:1.5;">
|
| 20 |
+
<b>Left:</b> Average performance (Held-out-Ko) of open models trained on closed or open data;
|
| 21 |
+
our models are highlighted in green.
|
| 22 |
+
</em>
|
| 23 |
+
</p>
|
| 24 |
|
| 25 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
The **KO-REAson-0831** family comes in six variants based on the base model used.
|
| 28 |
+
|
| 29 |
+
| Model (link) | Base | Notes |
|
| 30 |
+
| -------------------------------------------------------------------------------------------- | -------------------- | --------------------------- |
|
| 31 |
+
| [KO-REAson-L3_1-8B-0831](https://huggingface.co/KoReason/KO-REASon-L3_1-8B-0831) | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) | `L3_1` → Llama-3.1-8B |
|
| 32 |
+
| [KO-REAson-KL3_1-8B-0831](https://huggingface.co/KoReason/KO-REASon-KL3_1-8B-0831) | [Koni-Llama-3.1-8B](https://huggingface.co/KISTI-KONI/KONI-Llama3.1-8B-Instruct-20241024) | `KL3_1` → Koni-Llama-3.1-8B |
|
| 33 |
+
| [KO-REAson-G3-4B-0831](https://huggingface.co/KoReason/KO-REASon-G3-4B-0831) | [Gemma-3 4B](https://huggingface.co/google/gemma-3-4b-it) | `G3` → Gemma-3-4B |
|
| 34 |
+
| [KO-REAson-AX3_1-7B-0831](https://huggingface.co/KoReason/KO-REASon-AX3_1-7B-0831) | [A.X.-3.1-Light (≈7B)](https://huggingface.co/skt/A.X-3.1-Light) | `AX3_1` → A.X.-3.1-Light |
|
| 35 |
+
| [KO-REAson-K2505_8B-0831](https://huggingface.co/KoReason/KO-REASon-K2505_8B-0831) | [Kanana-2505 (8B)](https://huggingface.co/kakaocorp/kanana-1.5-8b-instruct-2505) | `K2505` → Kanana-2505 |
|
| 36 |
+
| [KO-REAson-7B-Q2_5-0831](https://huggingface.co/KoReason/KO-REASon-7B-Q2_5-0831) | [Qwen-2.5 (7B)](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | `Q2_5` → Qwen-2.5 |
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Performance
|
| 41 |
+
|
| 42 |
+
**Evaluation Datasets**
|
| 43 |
+
|
| 44 |
+
The model's performance was evaluated across a total of 11 benchmarks, and the evaluation suite is divided into two parts: (You can check these benchmarks in [HAERAE-HUB/KoSimpleEval](https://huggingface.co/datasets/HAERAE-HUB/KoSimpleEval))
|
| 45 |
+
|
| 46 |
+
- **Held-in**: This set of benchmarks is used for routine monitoring of the model's performance during the training and ablation study phases.
|
| 47 |
+
- **Held-out**: This set is used only once to evaluate the final model after all training and ablations are complete.
|
| 48 |
+
|
| 49 |
+
This separation is designed to prevent inadvertent overfitting to the benchmarks during the iterative training process and to provide a more accurate measure of the model's generalization capabilities.
|
| 50 |
+
|
| 51 |
+
|**Category**|**Held-in**|**Held-out**|
|
| 52 |
+
|---|---|---|
|
| 53 |
+
|**General Knowledge**|KMMLU-Redux|KMMLU-HARD, KMMLU-Pro|
|
| 54 |
+
|**Reasoning**|MCLM|KSM, GPQA, AIME2024, AIME2025|
|
| 55 |
+
|**Korean-specific**|HAE-RAE Bench|CLIcK, KoBALT-700|
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
**Comparison with models trained on public datasets**
|
| 59 |
+
|
| 60 |
+
<table>
|
| 61 |
+
<thead>
|
| 62 |
+
<tr>
|
| 63 |
+
<th>Models</th>
|
| 64 |
+
<th># Instances</th>
|
| 65 |
+
<th>Methodology</th>
|
| 66 |
+
<th>Held-Out (Ko)</th>
|
| 67 |
+
<th>Held-Out (En)</th>
|
| 68 |
+
<th>Total</th>
|
| 69 |
+
</tr>
|
| 70 |
+
</thead>
|
| 71 |
+
<tbody>
|
| 72 |
+
<tr>
|
| 73 |
+
<th>KO-REASon-AX3_1-7B-0831(Ours)</th>
|
| 74 |
+
<td>260k</td>
|
| 75 |
+
<td>SFT</td>
|
| 76 |
+
<td><b>44.6</b></td>
|
| 77 |
+
<td>41.2</td>
|
| 78 |
+
<td><u>43.3</u></td>
|
| 79 |
+
</tr>
|
| 80 |
+
<tr>
|
| 81 |
+
<th>KO-REASon-7B-Q2_5-0831(Ours)</th>
|
| 82 |
+
<td>260k</td>
|
| 83 |
+
<td>SFT</td>
|
| 84 |
+
<td><b>45.10</b></td>
|
| 85 |
+
<td>38.75</td>
|
| 86 |
+
<td><u>49.95</u></td>
|
| 87 |
+
</tr>
|
| 88 |
+
<tr>
|
| 89 |
+
<td colspan="6" style="text-align:center; font-weight:bold;">Open Recipe (En)</td>
|
| 90 |
+
</tr>
|
| 91 |
+
<tr>
|
| 92 |
+
<th>OpenThinker3-7B</th>
|
| 93 |
+
<td>1.2M</td>
|
| 94 |
+
<td>SFT</td>
|
| 95 |
+
<td>33.6</td>
|
| 96 |
+
<td><b>55.5</b></td>
|
| 97 |
+
<td>41.8</td>
|
| 98 |
+
</tr>
|
| 99 |
+
<tr>
|
| 100 |
+
<th>s1.1-7B</th>
|
| 101 |
+
<td>1k</td>
|
| 102 |
+
<td>SFT</td>
|
| 103 |
+
<td>35.6</td>
|
| 104 |
+
<td>23.4</td>
|
| 105 |
+
<td>31.1</td>
|
| 106 |
+
</tr>
|
| 107 |
+
<tr>
|
| 108 |
+
<th>Llama-3.1-Nemotron-Nano-8B-v1</th>
|
| 109 |
+
<td>>3M</td>
|
| 110 |
+
<td>SFT & RL</td>
|
| 111 |
+
<td>27.0</td>
|
| 112 |
+
<td>44.1</td>
|
| 113 |
+
<td>33.4</td>
|
| 114 |
+
</tr>
|
| 115 |
+
<tr>
|
| 116 |
+
<td colspan="6" style="text-align:center; font-weight:bold;">Open Recipe (Ko)</td>
|
| 117 |
+
</tr>
|
| 118 |
+
<tr>
|
| 119 |
+
<th>Ko-R1-14B</th>
|
| 120 |
+
<td>45k</td>
|
| 121 |
+
<td>SFT</td>
|
| 122 |
+
<td><u>43.7</u></td>
|
| 123 |
+
<td><u>46.3</u></td>
|
| 124 |
+
<td><b>44.7</b></td>
|
| 125 |
+
</tr>
|
| 126 |
+
<tr>
|
| 127 |
+
<th>Ko-R1-7B</th>
|
| 128 |
+
<td>45k</td>
|
| 129 |
+
<td>SFT</td>
|
| 130 |
+
<td>27.3</td>
|
| 131 |
+
<td>36.1</td>
|
| 132 |
+
<td>30.6</td>
|
| 133 |
+
</tr>
|
| 134 |
+
<tr>
|
| 135 |
+
<th>LLaMa-3.1-Ko-Reasoning-8B</th>
|
| 136 |
+
<td>63k</td>
|
| 137 |
+
<td>SFT</td>
|
| 138 |
+
<td>17.7</td>
|
| 139 |
+
<td>7.7</td>
|
| 140 |
+
<td>14.0</td>
|
| 141 |
+
</tr>
|
| 142 |
+
</tbody>
|
| 143 |
+
</table>
|
| 144 |
+
|
| 145 |
+
**Held-out benchmark performance**
|
| 146 |
+
|
| 147 |
+
<table border="1" cellspacing="0" cellpadding="6">
|
| 148 |
+
<thead>
|
| 149 |
+
<tr>
|
| 150 |
+
<th rowspan="2">Model</th>
|
| 151 |
+
<th rowspan="2">Model Size</th>
|
| 152 |
+
<th colspan="2">General</th>
|
| 153 |
+
<th colspan="4">Reasoning</th>
|
| 154 |
+
<th colspan="2">Korean-Specific</th>
|
| 155 |
+
<th rowspan="2">Average<br>(Held-out)</th>
|
| 156 |
+
<th rowspan="2">Average<br>(Held-out-Ko)</th>
|
| 157 |
+
</tr>
|
| 158 |
+
<tr>
|
| 159 |
+
<th>KMMLU-HARD</th>
|
| 160 |
+
<th>KMMLU-Pro</th>
|
| 161 |
+
<th>KSM</th>
|
| 162 |
+
<th>AIME 2024</th>
|
| 163 |
+
<th>AIME 2025</th>
|
| 164 |
+
<th>GPQA</th>
|
| 165 |
+
<th>CLiCK</th>
|
| 166 |
+
<th>KoBALT-700</th>
|
| 167 |
+
</tr>
|
| 168 |
+
</thead>
|
| 169 |
+
<tbody>
|
| 170 |
+
<tr>
|
| 171 |
+
<td><b>Llama-3.1-Nemotron-Nano-8B</b></td>
|
| 172 |
+
<td>8.03</td><td>21.47</td><td>22.89</td><td>47.06</td><td>56.67</td><td>43.33</td><td>32.32</td><td>34.54</td><td>9.29</td><td>33.45</td><td>27.05</td>
|
| 173 |
+
</tr>
|
| 174 |
+
<tr>
|
| 175 |
+
<td><b>Llama-3.1-Korean-Reasoning-8B-Instruct</b></td>
|
| 176 |
+
<td>8.03</td><td>14.91</td><td>21.72</td><td>6.09</td><td>0.00</td><td>0.00</td><td>23.23</td><td>39.65</td><td>6.14</td><td>13.97</td><td>17.70</td>
|
| 177 |
+
</tr>
|
| 178 |
+
<tr>
|
| 179 |
+
<td><b>EXAONE-Deep-7.8B</b></td>
|
| 180 |
+
<td>7.82</td><td><u>40.96</u></td><td>37.35</td><td><b>70.80</b></td><td><b>70.00</b></td><td><b>63.33</b></td><td><b>64.65</b></td><td>54.24</td><td>18.86</td><td><b>52.52</b></td><td>44.44</td>
|
| 181 |
+
</tr>
|
| 182 |
+
<tr>
|
| 183 |
+
<td><b>DeepSeek-R1-Distill-Qwen-7B</b></td>
|
| 184 |
+
<td>7.62</td><td>0.00</td><td>23.00</td><td>56.09</td><td>60.00</td><td>40.00</td><td>43.43</td><td>0.00</td><td>8.29</td><td>28.85</td><td>17.48</td>
|
| 185 |
+
</tr>
|
| 186 |
+
<tr>
|
| 187 |
+
<td><b>DeepSeek-R1-Distill-Llama-8B</b></td>
|
| 188 |
+
<td>8.03</td><td>23.22</td><td>26.26</td><td>29.97</td><td>33.33</td><td>20.00</td><td><U>46.46</u></td><td>39.05</td><td>13.29</td><td>28.95</td><td>26.36</td>
|
| 189 |
+
</tr>
|
| 190 |
+
<tr>
|
| 191 |
+
<td><b>s1.1-7B</b></td>
|
| 192 |
+
<td>7.62</td><td>31.16</td><td><u>37.70</u></td><td>30.60</td><td>16.67</td><td>23.33</td><td>30.30</td><td><u>56.84</u></td><td><u>21.86</u></td><td>31.06</td><td>35.63</td>
|
| 193 |
+
</tr>
|
| 194 |
+
<tr>
|
| 195 |
+
<td><b>OpenThinker3-7B</b></td>
|
| 196 |
+
<td>7.62</td><td>30.31</td><td>26.26</td><td><u>63.59</u></td><td><u>66.67</u></td><td><u>53.33</u></td><td><u>46.46</u></td><td>47.69</td><td>10.14</td><td>35.63</td><td>30.60</td>
|
| 197 |
+
</tr>
|
| 198 |
+
<tr>
|
| 199 |
+
<td><b>Ko-R1-7B</b></td>
|
| 200 |
+
<td>7.61</td><td>28.46</td><td>19.31</td><td>51.61</td><td>46.67</td><td>33.33</td><td>28.28</td><td>32.48</td><td>4.71</td><td>30.61</td><td>27.31</td>
|
| 201 |
+
</tr>
|
| 202 |
+
<tr>
|
| 203 |
+
<td><b>KO-REASon-AX3_1-7B-0831</b></td>
|
| 204 |
+
<td>7.26</td><td>45.57</td><td>38.13</td><td>52.80</td><td>53.33</td><td>33.33</td><td>36.87</td><td><b>62.86</b></td><td>23.43</td><td><u>43.29</u></td><td><u>44.56</u></td>
|
| 205 |
+
</tr>
|
| 206 |
+
<tr>
|
| 207 |
+
<td><b>KO-REASon-7B-Q2_5-0831</b></td>
|
| 208 |
+
<td>7.26</td><td><b>46.81</b></td><td><b>44.93</b></td><td>48.11</td><td>43.33</td><td>30.00</td><td>42.93</td><td>60.65</td><td><b>25.00</b></td><td>42.72</td><td><b>45.10</b></td>
|
| 209 |
+
</tr>
|
| 210 |
+
</tbody>
|
| 211 |
+
</table>
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
## Citation
|
| 215 |
+
```
|
| 216 |
+
The paper will be released soon!
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
## Contact
|
| 221 |
+
|
| 222 |
+
For any questions contact us via the following email :)
|
| 223 |
+
|
| 224 |
+
```
|
| 225 | |
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
## Acknowlegments
|
| 230 |
+
This research was supported by the Korea Institute of Science and Technology Information (KISTI) (No.(KISTI) K25L1M1C1), aimed at developing KONI (KISTI Open Neural Intelligence), a large language model specialized in science and technology.
|