KameronB commited on
Commit
e40b082
·
verified ·
1 Parent(s): 093771a

Upload 16 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "in_features": 768,
3
+ "out_features": 3072,
4
+ "bias": false,
5
+ "activation_function": "torch.nn.modules.linear.Identity"
6
+ }
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d91940c1f06566db6fd73043dca0eba9811b8331cdef9f4863a975dd881b78b3
3
+ size 9437272
3_Dense/config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "in_features": 3072,
3
+ "out_features": 768,
4
+ "bias": false,
5
+ "activation_function": "torch.nn.modules.linear.Identity"
6
+ }
3_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b36991af891ca53b171c9753b2b8f73c41d9903605d1910dd2f5e0b39e6a4375
3
+ size 9437272
README.md CHANGED
@@ -1,3 +1,374 @@
1
- ---
2
- license: gemma
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:1979
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: google/embeddinggemma-300m
11
+ widget:
12
+ - source_sentence: The iPhone Bluetooth connection drops unexpectedly during use.
13
+ sentences:
14
+ - The customer is asking how to update apps on their iPhone automatically.
15
+ - The device loses power quickly despite showing a 100% battery level earlier.
16
+ - Bluetooth devices disconnect frequently when paired with the iPhone.
17
+ - source_sentence: The crash in the cloud service happened when the authentication
18
+ module failed to process tokens correctly.
19
+ sentences:
20
+ - During the parade, the crash of a float startled the spectators but caused no
21
+ injuries.
22
+ - Cross-platform contact synchronization failed in the application.
23
+ - Engineers fixed the crash by patching the token validation algorithm causing the
24
+ server to terminate.
25
+ - source_sentence: Atlassian Confluence is often used for internal company wikis.
26
+ sentences:
27
+ - Many organizations rely on Confluence to maintain up-to-date internal knowledge
28
+ bases.
29
+ - Threading in Slack helps prevent important messages from getting lost.
30
+ - Confluence users sometimes face performance issues when integrating with third-party
31
+ plugins, causing delays in page loading and editing.
32
+ - source_sentence: Windows supports file system formats like NTFS and FAT32 for data
33
+ storage management.
34
+ sentences:
35
+ - Network-stored PDFs cause Adobe Acrobat to shut down unexpectedly.
36
+ - Windows users often face network connectivity issues that prevent access to shared
37
+ drives, unrelated to file system formats like NTFS or FAT32.
38
+ - Converting drives between NTFS and FAT32 is common in Windows for compatibility
39
+ reasons.
40
+ - source_sentence: Tableau can be extended with Python or R for advanced analytics.
41
+ sentences:
42
+ - Data scientists integrate Tableau with external scripts to enhance visualizations.
43
+ - By using ServiceNow, companies reduce manual work through automation.
44
+ - The system administrator troubleshoots network latency issues affecting server
45
+ performance.
46
+ pipeline_tag: sentence-similarity
47
+ library_name: sentence-transformers
48
+ ---
49
+
50
+ # SentenceTransformer based on google/embeddinggemma-300m
51
+
52
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** Sentence Transformer
58
+ - **Base model:** [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) <!-- at revision 57c266a740f537b4dc058e1b0cda161fd15afa75 -->
59
+ - **Maximum Sequence Length:** 2048 tokens
60
+ - **Output Dimensionality:** 768 dimensions
61
+ - **Similarity Function:** Cosine Similarity
62
+ - **Training Dataset:**
63
+ - json
64
+ <!-- - **Language:** Unknown -->
65
+ <!-- - **License:** Unknown -->
66
+
67
+ ### Model Sources
68
+
69
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
70
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
71
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
72
+
73
+ ### Full Model Architecture
74
+
75
+ ```
76
+ SentenceTransformer(
77
+ (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
78
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
79
+ (2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
80
+ (3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
81
+ (4): Normalize()
82
+ )
83
+ ```
84
+
85
+ ## Usage
86
+
87
+ ### Direct Usage (Sentence Transformers)
88
+
89
+ First install the Sentence Transformers library:
90
+
91
+ ```bash
92
+ pip install -U sentence-transformers
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+ ```python
97
+ from sentence_transformers import SentenceTransformer
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SentenceTransformer("sentence_transformers_model_id")
101
+ # Run inference
102
+ queries = [
103
+ "Tableau can be extended with Python or R for advanced analytics.",
104
+ ]
105
+ documents = [
106
+ 'Data scientists integrate Tableau with external scripts to enhance visualizations.',
107
+ 'The system administrator troubleshoots network latency issues affecting server performance.',
108
+ 'By using ServiceNow, companies reduce manual work through automation.',
109
+ ]
110
+ query_embeddings = model.encode_query(queries)
111
+ document_embeddings = model.encode_document(documents)
112
+ print(query_embeddings.shape, document_embeddings.shape)
113
+ # [1, 768] [3, 768]
114
+
115
+ # Get the similarity scores for the embeddings
116
+ similarities = model.similarity(query_embeddings, document_embeddings)
117
+ print(similarities)
118
+ # tensor([[ 0.7530, -0.0187, 0.1202]])
119
+ ```
120
+
121
+ <!--
122
+ ### Direct Usage (Transformers)
123
+
124
+ <details><summary>Click to see the direct usage in Transformers</summary>
125
+
126
+ </details>
127
+ -->
128
+
129
+ <!--
130
+ ### Downstream Usage (Sentence Transformers)
131
+
132
+ You can finetune this model on your own dataset.
133
+
134
+ <details><summary>Click to expand</summary>
135
+
136
+ </details>
137
+ -->
138
+
139
+ <!--
140
+ ### Out-of-Scope Use
141
+
142
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
143
+ -->
144
+
145
+ <!--
146
+ ## Bias, Risks and Limitations
147
+
148
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
149
+ -->
150
+
151
+ <!--
152
+ ### Recommendations
153
+
154
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
155
+ -->
156
+
157
+ ## Training Details
158
+
159
+ ### Training Dataset
160
+
161
+ #### json
162
+
163
+ * Dataset: json
164
+ * Size: 1,979 training samples
165
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
166
+ * Approximate statistics based on the first 1000 samples:
167
+ | | anchor | positive | negative |
168
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
169
+ | type | string | string | string |
170
+ | details | <ul><li>min: 5 tokens</li><li>mean: 14.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.98 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.91 tokens</li><li>max: 31 tokens</li></ul> |
171
+ * Samples:
172
+ | anchor | positive | negative |
173
+ |:-----------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------|
174
+ | <code>He uses part of his workday to conduct quality assurance tests on products.</code> | <code>She checks product functionality and identifies defects as part of her role.</code> | <code>The violinist practices scales and pieces late into the evening.</code> |
175
+ | <code>Gmail search function does not return relevant results.</code> | <code>He struggles to find emails using Gmail's search bar.</code> | <code>She watches YouTube videos on email organization tips.</code> |
176
+ | <code>Software installation hangs midway</code> | <code>Setup process freezes during installation</code> | <code>Desktop icons are rearranged randomly</code> |
177
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
178
+ ```json
179
+ {
180
+ "scale": 20.0,
181
+ "similarity_fct": "cos_sim",
182
+ "gather_across_devices": false
183
+ }
184
+ ```
185
+
186
+ ### Training Hyperparameters
187
+ #### Non-Default Hyperparameters
188
+
189
+ - `per_device_train_batch_size`: 64
190
+ - `learning_rate`: 2e-05
191
+ - `num_train_epochs`: 1
192
+ - `warmup_ratio`: 0.1
193
+ - `prompts`: task: sentence similarity | query:
194
+
195
+ #### All Hyperparameters
196
+ <details><summary>Click to expand</summary>
197
+
198
+ - `overwrite_output_dir`: False
199
+ - `do_predict`: False
200
+ - `eval_strategy`: no
201
+ - `prediction_loss_only`: True
202
+ - `per_device_train_batch_size`: 64
203
+ - `per_device_eval_batch_size`: 8
204
+ - `per_gpu_train_batch_size`: None
205
+ - `per_gpu_eval_batch_size`: None
206
+ - `gradient_accumulation_steps`: 1
207
+ - `eval_accumulation_steps`: None
208
+ - `torch_empty_cache_steps`: None
209
+ - `learning_rate`: 2e-05
210
+ - `weight_decay`: 0.0
211
+ - `adam_beta1`: 0.9
212
+ - `adam_beta2`: 0.999
213
+ - `adam_epsilon`: 1e-08
214
+ - `max_grad_norm`: 1.0
215
+ - `num_train_epochs`: 1
216
+ - `max_steps`: -1
217
+ - `lr_scheduler_type`: linear
218
+ - `lr_scheduler_kwargs`: {}
219
+ - `warmup_ratio`: 0.1
220
+ - `warmup_steps`: 0
221
+ - `log_level`: passive
222
+ - `log_level_replica`: warning
223
+ - `log_on_each_node`: True
224
+ - `logging_nan_inf_filter`: True
225
+ - `save_safetensors`: True
226
+ - `save_on_each_node`: False
227
+ - `save_only_model`: False
228
+ - `restore_callback_states_from_checkpoint`: False
229
+ - `no_cuda`: False
230
+ - `use_cpu`: False
231
+ - `use_mps_device`: False
232
+ - `seed`: 42
233
+ - `data_seed`: None
234
+ - `jit_mode_eval`: False
235
+ - `bf16`: False
236
+ - `fp16`: False
237
+ - `fp16_opt_level`: O1
238
+ - `half_precision_backend`: auto
239
+ - `bf16_full_eval`: False
240
+ - `fp16_full_eval`: False
241
+ - `tf32`: None
242
+ - `local_rank`: 0
243
+ - `ddp_backend`: None
244
+ - `tpu_num_cores`: None
245
+ - `tpu_metrics_debug`: False
246
+ - `debug`: []
247
+ - `dataloader_drop_last`: False
248
+ - `dataloader_num_workers`: 0
249
+ - `dataloader_prefetch_factor`: None
250
+ - `past_index`: -1
251
+ - `disable_tqdm`: False
252
+ - `remove_unused_columns`: True
253
+ - `label_names`: None
254
+ - `load_best_model_at_end`: False
255
+ - `ignore_data_skip`: False
256
+ - `fsdp`: []
257
+ - `fsdp_min_num_params`: 0
258
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
259
+ - `fsdp_transformer_layer_cls_to_wrap`: None
260
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
261
+ - `parallelism_config`: None
262
+ - `deepspeed`: None
263
+ - `label_smoothing_factor`: 0.0
264
+ - `optim`: adamw_torch_fused
265
+ - `optim_args`: None
266
+ - `adafactor`: False
267
+ - `group_by_length`: False
268
+ - `length_column_name`: length
269
+ - `project`: huggingface
270
+ - `trackio_space_id`: trackio
271
+ - `ddp_find_unused_parameters`: None
272
+ - `ddp_bucket_cap_mb`: None
273
+ - `ddp_broadcast_buffers`: False
274
+ - `dataloader_pin_memory`: True
275
+ - `dataloader_persistent_workers`: False
276
+ - `skip_memory_metrics`: True
277
+ - `use_legacy_prediction_loop`: False
278
+ - `push_to_hub`: False
279
+ - `resume_from_checkpoint`: None
280
+ - `hub_model_id`: None
281
+ - `hub_strategy`: every_save
282
+ - `hub_private_repo`: None
283
+ - `hub_always_push`: False
284
+ - `hub_revision`: None
285
+ - `gradient_checkpointing`: False
286
+ - `gradient_checkpointing_kwargs`: None
287
+ - `include_inputs_for_metrics`: False
288
+ - `include_for_metrics`: []
289
+ - `eval_do_concat_batches`: True
290
+ - `fp16_backend`: auto
291
+ - `push_to_hub_model_id`: None
292
+ - `push_to_hub_organization`: None
293
+ - `mp_parameters`:
294
+ - `auto_find_batch_size`: False
295
+ - `full_determinism`: False
296
+ - `torchdynamo`: None
297
+ - `ray_scope`: last
298
+ - `ddp_timeout`: 1800
299
+ - `torch_compile`: False
300
+ - `torch_compile_backend`: None
301
+ - `torch_compile_mode`: None
302
+ - `include_tokens_per_second`: False
303
+ - `include_num_input_tokens_seen`: no
304
+ - `neftune_noise_alpha`: None
305
+ - `optim_target_modules`: None
306
+ - `batch_eval_metrics`: False
307
+ - `eval_on_start`: False
308
+ - `use_liger_kernel`: False
309
+ - `liger_kernel_config`: None
310
+ - `eval_use_gather_object`: False
311
+ - `average_tokens_across_devices`: True
312
+ - `prompts`: task: sentence similarity | query:
313
+ - `batch_sampler`: batch_sampler
314
+ - `multi_dataset_batch_sampler`: proportional
315
+ - `router_mapping`: {}
316
+ - `learning_rate_mapping`: {}
317
+
318
+ </details>
319
+
320
+ ### Framework Versions
321
+ - Python: 3.12.12
322
+ - Sentence Transformers: 5.1.2
323
+ - Transformers: 4.57.1
324
+ - PyTorch: 2.8.0+cu126
325
+ - Accelerate: 1.11.0
326
+ - Datasets: 4.0.0
327
+ - Tokenizers: 0.22.1
328
+
329
+ ## Citation
330
+
331
+ ### BibTeX
332
+
333
+ #### Sentence Transformers
334
+ ```bibtex
335
+ @inproceedings{reimers-2019-sentence-bert,
336
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
337
+ author = "Reimers, Nils and Gurevych, Iryna",
338
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
339
+ month = "11",
340
+ year = "2019",
341
+ publisher = "Association for Computational Linguistics",
342
+ url = "https://arxiv.org/abs/1908.10084",
343
+ }
344
+ ```
345
+
346
+ #### MultipleNegativesRankingLoss
347
+ ```bibtex
348
+ @misc{henderson2017efficient,
349
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
350
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
351
+ year={2017},
352
+ eprint={1705.00652},
353
+ archivePrefix={arXiv},
354
+ primaryClass={cs.CL}
355
+ }
356
+ ```
357
+
358
+ <!--
359
+ ## Glossary
360
+
361
+ *Clearly define terms in order to be accessible across audiences.*
362
+ -->
363
+
364
+ <!--
365
+ ## Model Card Authors
366
+
367
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
368
+ -->
369
+
370
+ <!--
371
+ ## Model Card Contact
372
+
373
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
374
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_sliding_window_pattern": 6,
3
+ "architectures": [
4
+ "Gemma3TextModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "attn_logit_softcapping": null,
9
+ "bos_token_id": 2,
10
+ "dtype": "float32",
11
+ "eos_token_id": 1,
12
+ "final_logit_softcapping": null,
13
+ "head_dim": 256,
14
+ "hidden_activation": "gelu_pytorch_tanh",
15
+ "hidden_size": 768,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 1152,
18
+ "layer_types": [
19
+ "sliding_attention",
20
+ "sliding_attention",
21
+ "sliding_attention",
22
+ "sliding_attention",
23
+ "sliding_attention",
24
+ "full_attention",
25
+ "sliding_attention",
26
+ "sliding_attention",
27
+ "sliding_attention",
28
+ "sliding_attention",
29
+ "sliding_attention",
30
+ "full_attention",
31
+ "sliding_attention",
32
+ "sliding_attention",
33
+ "sliding_attention",
34
+ "sliding_attention",
35
+ "sliding_attention",
36
+ "full_attention",
37
+ "sliding_attention",
38
+ "sliding_attention",
39
+ "sliding_attention",
40
+ "sliding_attention",
41
+ "sliding_attention",
42
+ "full_attention"
43
+ ],
44
+ "max_position_embeddings": 2048,
45
+ "model_type": "gemma3_text",
46
+ "num_attention_heads": 3,
47
+ "num_hidden_layers": 24,
48
+ "num_key_value_heads": 1,
49
+ "pad_token_id": 0,
50
+ "query_pre_attn_scalar": 256,
51
+ "rms_norm_eps": 1e-06,
52
+ "rope_local_base_freq": 10000.0,
53
+ "rope_scaling": null,
54
+ "rope_theta": 1000000.0,
55
+ "sliding_window": 257,
56
+ "transformers_version": "4.57.1",
57
+ "use_bidirectional_attention": true,
58
+ "use_cache": true,
59
+ "vocab_size": 262144
60
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.2",
5
+ "transformers": "4.57.1",
6
+ "pytorch": "2.8.0+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "task: search result | query: ",
10
+ "document": "title: none | text: ",
11
+ "BitextMining": "task: search result | query: ",
12
+ "Clustering": "task: clustering | query: ",
13
+ "Classification": "task: classification | query: ",
14
+ "InstructionRetrieval": "task: code retrieval | query: ",
15
+ "MultilabelClassification": "task: classification | query: ",
16
+ "PairClassification": "task: sentence similarity | query: ",
17
+ "Reranking": "task: search result | query: ",
18
+ "Retrieval": "task: search result | query: ",
19
+ "Retrieval-query": "task: search result | query: ",
20
+ "Retrieval-document": "title: none | text: ",
21
+ "STS": "task: sentence similarity | query: ",
22
+ "Summarization": "task: summarization | query: "
23
+ },
24
+ "default_prompt_name": null,
25
+ "similarity_fn_name": "cosine"
26
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57c775275aebdfea75400af7bf24e3ca6640cff09458bd975bed5489918abd6a
3
+ size 1211486072
modules.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Dense",
24
+ "type": "sentence_transformers.models.Dense"
25
+ },
26
+ {
27
+ "idx": 4,
28
+ "name": "4",
29
+ "path": "4_Normalize",
30
+ "type": "sentence_transformers.models.Normalize"
31
+ }
32
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 2048,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:216e2a79606fe879c9f17c529c71cd241338407fd5646b595ffd3c4b9ea1d503
3
+ size 33385262
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff