File size: 2,676 Bytes
b37539e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d01412d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
datasets:
- Riksarkivet/goteborgs_poliskammare_fore_1900_lines
- Riksarkivet/bergskollegium_relationer_och_skrivelser_lines
- Riksarkivet/bergskollegium_advokatfiskalskontoret_seg
- Riksarkivet/frihetstidens_utskottshandlingar
- Riksarkivet/frihetstidens_utskottshandlingar_seg
- Riksarkivet/gota_hovratt_seg
- Riksarkivet/jonkopings_radhusratts_och_magistrat_seg
- Riksarkivet/krigshovrattens_dombocker_seg
- Riksarkivet/svea_hovratt_seg
- Riksarkivet/trolldomskommissionen_seg
pipeline_tag: image-segmentation
tags:
- text-line-detection
- text-region-detection
- document-analysis
- historical-documents
- handwritten-text
- rf-detr
- instance-segmentation
---

# RF-DETR Seg-Preview: Historical Document Instance Segmentation

This model is trained to detect and segment text lines and text regions from historical handwritten documents spanning from the 16th to the 20th century.

## Model Description

RF-DETR Seg-Preview is an instance segmentation model based on the RF-DETR architecture. It predicts:
- Bounding boxes for text elements
- Class labels (text_region or text_line)
- Instance segmentation masks

### Classes

The model detects two classes:
- **text_region** (index: 1) - Larger regions of text content
- **text_line** (index: 2) - Individual lines of text

## Training Data

The model was trained on historical handwritten documents with the following data distribution:
- **Training set**: 11,495 images
- **Validation set**: 2,711 images
- **Test set**: 2,340 images

## Performance Metrics

### Validation Set Performance

| Class | mAP@50:95 | mAP@50 | Precision | Recall |
|-------|-----------|--------|-----------|--------|
| text_region | 0.822 | 0.963 | 0.949 | 0.940 |
| text_line | 0.621 | 0.936 | 0.957 | 0.940 |
| **Overall** | **0.721** | **0.950** | **0.953** | **0.940** |

### Test Set Performance

| Class | mAP@50:95 | mAP@50 | Precision | Recall |
|-------|-----------|--------|-----------|--------|
| text_region | 0.822 | 0.959 | 0.949 | 0.940 |
| text_line | 0.688 | 0.955 | 0.978 | 0.940 |
| **Overall** | **0.755** | **0.957** | **0.964** | **0.940** |

## Training Metrics

![Training Metrics](metrics_plot.png)

## Use Cases

This model is particularly suitable for:
- Text line detection for OCR preprocessing
- Document digitization projects involving historical manuscripts
- Historical document understanding and analysis

## Limitations

- The model is specifically trained on historical handwritten documents (16th-20th century)
- Performance may vary on modern printed documents or documents outside the training distribution
- Performance depends on image quality and document preservation state