Kayvane commited on
Commit
c6cbee2
·
1 Parent(s): fb6079f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -22,16 +22,16 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.8012333724071148
26
  - name: F1
27
  type: f1
28
- value: 0.7874955339868757
29
  - name: Recall
30
  type: recall
31
- value: 0.8012333724071148
32
  - name: Precision
33
  type: precision
34
- value: 0.7916364278982178
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,11 +41,11 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.6274
45
- - Accuracy: 0.8012
46
- - F1: 0.7875
47
- - Recall: 0.8012
48
- - Precision: 0.7916
49
 
50
  ## Model description
51
 
@@ -64,7 +64,7 @@ More information needed
64
  ### Training hyperparameters
65
 
66
  The following hyperparameters were used during training:
67
- - learning_rate: 1.3722796998427472e-05
68
  - train_batch_size: 32
69
  - eval_batch_size: 32
70
  - seed: 42
@@ -78,9 +78,9 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
81
- | 0.8234 | 0.61 | 1500 | 0.7809 | 0.7576 | 0.7201 | 0.7576 | 0.7086 |
82
- | 0.6725 | 1.22 | 3000 | 0.6747 | 0.7904 | 0.7724 | 0.7904 | 0.7773 |
83
- | 0.5999 | 1.83 | 4500 | 0.6274 | 0.8012 | 0.7875 | 0.8012 | 0.7916 |
84
 
85
 
86
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8166760103970236
26
  - name: F1
27
  type: f1
28
+ value: 0.8089132637288794
29
  - name: Recall
30
  type: recall
31
+ value: 0.8166760103970236
32
  - name: Precision
33
  type: precision
34
+ value: 0.810259366582512
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 0.5664
45
+ - Accuracy: 0.8167
46
+ - F1: 0.8089
47
+ - Recall: 0.8167
48
+ - Precision: 0.8103
49
 
50
  ## Model description
51
 
 
64
  ### Training hyperparameters
65
 
66
  The following hyperparameters were used during training:
67
+ - learning_rate: 2.9291066722689668e-05
68
  - train_batch_size: 32
69
  - eval_batch_size: 32
70
  - seed: 42
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
81
+ | 0.7592 | 0.61 | 1500 | 0.6981 | 0.7776 | 0.7495 | 0.7776 | 0.7610 |
82
+ | 0.5859 | 1.22 | 3000 | 0.6082 | 0.8085 | 0.7990 | 0.8085 | 0.8005 |
83
+ | 0.5228 | 1.83 | 4500 | 0.5664 | 0.8167 | 0.8089 | 0.8167 | 0.8103 |
84
 
85
 
86
  ### Framework versions