KingNish lbourdois commited on
Commit
ec3c31a
·
verified ·
1 Parent(s): fca9019

Improve language tag (#2)

Browse files

- Improve language tag (0ab6c984db31f6cd3b80530e784c03e2de9f6d15)


Co-authored-by: Loïck BOURDOIS <[email protected]>

Files changed (1) hide show
  1. README.md +78 -66
README.md CHANGED
@@ -1,67 +1,79 @@
1
- ---
2
- base_model: Qwen/Qwen2.5-0.5B-Instruct
3
- language:
4
- - en
5
- license: apache-2.0
6
- datasets:
7
- - KingNish/reasoning-base-20k
8
- tags:
9
- - text-generation-inference
10
- - transformers
11
- - unsloth
12
- - qwen2
13
- - trl
14
- - sft
15
- - reasoning
16
- ---
17
-
18
-
19
- # Model Dexcription
20
-
21
- It's First iteration of this model. For testing purpose its just trained on 10k rows.
22
- It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1.
23
- It do reasoning separately no special tokens or in response reasoning.
24
- Below is inference code.
25
- ```python
26
- from transformers import AutoModelForCausalLM, AutoTokenizer
27
-
28
- MAX_REASONING_TOKENS = 1024
29
- MAX_RESPONSE_TOKENS = 512
30
-
31
- model_name = "KingNish/Reasoning-0.5b"
32
-
33
- model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
34
- tokenizer = AutoTokenizer.from_pretrained(model_name)
35
-
36
- prompt = "Which is greater 9.9 or 9.11 ??"
37
- messages = [
38
- {"role": "user", "content": prompt}
39
- ]
40
-
41
- # Generate reasoning
42
- reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
43
- reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
44
- reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
45
- reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
46
-
47
- # print("REASONING: " + reasoning_output)
48
-
49
- # Generate answer
50
- messages.append({"role": "reasoning", "content": reasoning_output})
51
- response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
52
- response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
53
- response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
54
- response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
55
-
56
- print("ANSWER: " + response_output)
57
- ```
58
-
59
- - **Trained by:** [Nishith Jain](https://huggingface.co/KingNish)
60
- - **License:** apache-2.0
61
- - **Finetuned from model :** [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)
62
- - **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
63
-
64
-
65
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
66
-
 
 
 
 
 
 
 
 
 
 
 
 
67
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-0.5B-Instruct
3
+ language:
4
+ - zho
5
+ - eng
6
+ - fra
7
+ - spa
8
+ - por
9
+ - deu
10
+ - ita
11
+ - rus
12
+ - jpn
13
+ - kor
14
+ - vie
15
+ - tha
16
+ - ara
17
+ license: apache-2.0
18
+ datasets:
19
+ - KingNish/reasoning-base-20k
20
+ tags:
21
+ - text-generation-inference
22
+ - transformers
23
+ - unsloth
24
+ - qwen2
25
+ - trl
26
+ - sft
27
+ - reasoning
28
+ ---
29
+
30
+
31
+ # Model Dexcription
32
+
33
+ It's First iteration of this model. For testing purpose its just trained on 10k rows.
34
+ It performed very well than expected. It do first reasoning and than generate response on based on it but it do like o1.
35
+ It do reasoning separately no special tokens or in response reasoning.
36
+ Below is inference code.
37
+ ```python
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+
40
+ MAX_REASONING_TOKENS = 1024
41
+ MAX_RESPONSE_TOKENS = 512
42
+
43
+ model_name = "KingNish/Reasoning-0.5b"
44
+
45
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
46
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
47
+
48
+ prompt = "Which is greater 9.9 or 9.11 ??"
49
+ messages = [
50
+ {"role": "user", "content": prompt}
51
+ ]
52
+
53
+ # Generate reasoning
54
+ reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
55
+ reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
56
+ reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
57
+ reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
58
+
59
+ # print("REASONING: " + reasoning_output)
60
+
61
+ # Generate answer
62
+ messages.append({"role": "reasoning", "content": reasoning_output})
63
+ response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
+ response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
65
+ response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
66
+ response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
67
+
68
+ print("ANSWER: " + response_output)
69
+ ```
70
+
71
+ - **Trained by:** [Nishith Jain](https://huggingface.co/KingNish)
72
+ - **License:** apache-2.0
73
+ - **Finetuned from model :** [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)
74
+ - **Dataset used :** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
75
+
76
+
77
+ This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
78
+
79
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)