HumanAesExpert commited on
Commit
4aa0b2b
·
verified ·
1 Parent(s): d453abf

Upload 2 files

Browse files
Files changed (2) hide show
  1. modeling_internvl_chat.py +0 -2
  2. modeling_qwen.py +3 -2
modeling_internvl_chat.py CHANGED
@@ -26,8 +26,6 @@ weight_tensor = torch.Tensor([5.,4.,3.,2.,1.])
26
 
27
  def get_special_token(tokenizer):
28
  preferential_ids_ = [id_[-1] for id_ in tokenizer(special_words)["input_ids"]]
29
- print(preferential_ids_)
30
- print(tokenizer.batch_decode(preferential_ids_))
31
  return preferential_ids_
32
 
33
 
 
26
 
27
  def get_special_token(tokenizer):
28
  preferential_ids_ = [id_[-1] for id_ in tokenizer(special_words)["input_ids"]]
 
 
29
  return preferential_ids_
30
 
31
 
modeling_qwen.py CHANGED
@@ -2,6 +2,7 @@ from transformers.models.qwen2.modeling_qwen2 import *
2
  from transformers.modeling_outputs import dataclass, ModelOutput
3
  import torch.nn as nn
4
  import torch.nn.init as init
 
5
 
6
  @dataclass
7
  class CausalLMOutputWithPastAndScore(ModelOutput):
@@ -113,8 +114,7 @@ class Expert_Head(nn.Module):
113
 
114
  pooled_expert_scores = torch.cat([pooled_scores2[:,:5], pooled_scores3, pooled_scores2[:,5:], pooled_scores4, expert_scores], dim=1)
115
 
116
- return pooled_expert_scores
117
-
118
 
119
  class Qwen2ForCausalLM_score(Qwen2ForCausalLM):
120
  _tied_weights_keys = ["lm_head.weight", "regression_head.weight"]
@@ -200,6 +200,7 @@ class Qwen2ForCausalLM_score(Qwen2ForCausalLM):
200
  logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
201
 
202
  scores = self.lm_regression_head(hidden_states)
 
203
 
204
  if input_ids is not None:
205
  batch_size = input_ids.shape[0]
 
2
  from transformers.modeling_outputs import dataclass, ModelOutput
3
  import torch.nn as nn
4
  import torch.nn.init as init
5
+ import torch.nn.functional as F
6
 
7
  @dataclass
8
  class CausalLMOutputWithPastAndScore(ModelOutput):
 
114
 
115
  pooled_expert_scores = torch.cat([pooled_scores2[:,:5], pooled_scores3, pooled_scores2[:,5:], pooled_scores4, expert_scores], dim=1)
116
 
117
+ return F.sigmoid(pooled_expert_scores)
 
118
 
119
  class Qwen2ForCausalLM_score(Qwen2ForCausalLM):
120
  _tied_weights_keys = ["lm_head.weight", "regression_head.weight"]
 
200
  logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
201
 
202
  scores = self.lm_regression_head(hidden_states)
203
+ scores = F.sigmoid(scores)
204
 
205
  if input_ids is not None:
206
  batch_size = input_ids.shape[0]