Update README.md (#8)
Browse files- Update README.md (2bbe448b850e983a400c833a636f977a0af79e3a)
README.md
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
---
|
| 3 |
license: apache-2.0
|
| 4 |
language:
|
|
@@ -7,20 +6,17 @@ language:
|
|
| 7 |
|
| 8 |
# **K2-V2**
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
<img src="figures/banner.png" alt="k2-banner-placeholder"/>
|
| 13 |
-
|
| 14 |
-
<br>
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
-
<img src="figures/base-models.png" width="400" alt="
|
| 24 |
|
| 25 |
---
|
| 26 |
|
|
@@ -29,8 +25,8 @@ Beyond standard competencies like knowledge and conversation, K2 provides advanc
|
|
| 29 |
```python
|
| 30 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 31 |
|
| 32 |
-
model = AutoModelForCausalLM.from_pretrained("
|
| 33 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 34 |
|
| 35 |
prompt = "Explain why the derivative of sin(x) is cos(x)."
|
| 36 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
@@ -42,11 +38,10 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
| 42 |
|
| 43 |
## **Evaluation Summary**
|
| 44 |
|
|
|
|
|
|
|
| 45 |
| Task / Model | base | mid-1 | mid-2 | mid-3 | mid-4 | Qwen2.5-72B | Llama3.0-70B | Llama3.1-70B | Olmo3-32B |
|
| 46 |
|--------------|------|-------|-------|-------|-------|--------------|---------------|---------------|------------|
|
| 47 |
-
| **Architecture** | Dense | Dense | Dense | Dense | Dense | Dense | Dense | Dense | Dense |
|
| 48 |
-
| **# Total Params** | 70B | 70B | 70B | 70B | 70B | 72B | 70B | 70B | 32B |
|
| 49 |
-
| **# Activated Params** | 70B | 70B | 70B | 70B | 70B | 72B | 70B | 70B | 32B |
|
| 50 |
| **General Tasks** | | | | | | | | | |
|
| 51 |
| **MMLU** | 74.3 | 74.4 | 73.5 | 75.0 | 75.2 | **86.1** | <u>79.5</u> | 79.3 | 75.2 |
|
| 52 |
| **MMLU-Pro** | 43.7 | 46.8 | 48.1 | **59.8** | 57.0 | <u>58.1</u> | 52.8 | 53.8 | 49.6 |
|
|
@@ -64,30 +59,20 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
| 64 |
| **Coding Tasks** | | | | | | | | | |
|
| 65 |
| **MBPP** | 57.6 | 57.8 | 58.2 | 59.8 | 61.8 | **75.4** | <u>69.2</u> | 64.4 | 60.2 |
|
| 66 |
| **HUMANEVAL** | 50.0 | 51.2 | <u>53.7</u> | **54.3** | **54.3** | **54.3** | 42.1 | 50.6 | 36.0 |
|
| 67 |
-
| **Logic Puzzles** | | | | | | | | | |
|
| 68 |
-
| **COUNTDOWN** | 1.3 | <u>53.3</u> | 53.1 | 35.9 | **75.6** | 6.0 | 1.0 | 0.5 | 23.2 |
|
| 69 |
-
| **KK-4 PEOPLE** | 4.8 | 44.9 | <u>68.0</u> | 64.5 | **92.9** | 26.1 | 4.2 | 7.6 | 42.4 |
|
| 70 |
-
| **KK-8 PEOPLE** | 0.5 | 23.2 | 41.3 | <u>51.6</u> | **82.8** | 5.7 | 1.1 | 1.3 | 13.0 |
|
| 71 |
-
| **ORDER-15 ITEMS** | 4.7 | 30.7 | 47.2 | <u>55.8</u> | **87.6** | 37.0 | 3.5 | 4.5 | 25.0 |
|
| 72 |
-
| **ORDER-30 ITEMS** | 0.0 | 0.3 | 3.0 | <u>34.1</u> | **40.3** | 0.7 | 0.2 | 0.1 | 0.6 |
|
| 73 |
-
| **Instruction Following** | | | | | | | | | |
|
| 74 |
-
| **IFEVAL** | 17.4 | 26.2 | 28.5 | <u>34.5</u> | 26.7 | **40.3** | 15.1 | 17.4 | 13.2 |
|
| 75 |
-
| **Arabic** | | | | | | | | | |
|
| 76 |
-
| **MMLU-Arabic** | 65.4 | 66.1 | 64.5 | 66.6 | 65.5 | **74.1** | 65.0 | <u>66.8</u> | 47.8 |
|
| 77 |
|
| 78 |
|
| 79 |
-
Please refer to our [Tech Report](
|
| 80 |
|
| 81 |
---
|
| 82 |
|
| 83 |
## **Datasets & Mixtures**
|
| 84 |
|
| 85 |
-
K2 training is organized into three stages, each using a transparent, publicly released mixture:
|
| 86 |
|
| 87 |
### **Pretraining Mix**
|
| 88 |
|
| 89 |
-
* Large-scale natural text corpus
|
| 90 |
-
*
|
| 91 |
* ~12T tokens
|
| 92 |
|
| 93 |
### **Mid-Training Mix**
|
|
@@ -102,10 +87,13 @@ K2 training is organized into three stages, each using a transparent, publicly r
|
|
| 102 |
|
| 103 |
All mixtures, filtering rules, and data sources are fully released for reproducibility.
|
| 104 |
|
|
|
|
|
|
|
| 105 |
---
|
| 106 |
|
| 107 |
## **Model Description**
|
| 108 |
-
- **Model type:**
|
|
|
|
| 109 |
- **Language(s) (NLP):** English
|
| 110 |
- **License:** Apache 2.0
|
| 111 |
|
|
@@ -114,22 +102,46 @@ All mixtures, filtering rules, and data sources are fully released for reproduci
|
|
| 114 |
| ----------- | ----------- |
|
| 115 |
| Total Parameters | 70B |
|
| 116 |
| Hidden Size | 8,192 |
|
| 117 |
-
| Intermediate Size (
|
| 118 |
| Number of Attention Heads | 64 |
|
| 119 |
-
| Number of
|
| 120 |
-
| RMSNorm Ι | 1e
|
| 121 |
-
|
|
| 122 |
| Max Mid-training Seq Length | 524,288 |
|
| 123 |
| Vocab Size | 250,000 |
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
---
|
| 126 |
|
| 127 |
-
##
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
```
|
| 132 |
-
@misc{
|
| 133 |
title = {K2-V2: A 360-Open, Reasoning-Enhanced Open Foundation Model},
|
| 134 |
author = {K2 Team},
|
| 135 |
year = {2025},
|
|
@@ -138,5 +150,3 @@ If you use our dataset in your research, please cite our [K2-V2 paper](LINK):
|
|
| 138 |
primaryClass = {cs.CL}
|
| 139 |
}
|
| 140 |
```
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
language:
|
|
|
|
| 6 |
|
| 7 |
# **K2-V2**
|
| 8 |
|
| 9 |
+
<img src="figures/K2.LOGO.PRIMARY.RGB.png" width="100" alt="K2-V2 model logo"/>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
π [Tech Report](https://www.llm360.ai/reports/K2_V2_report.pdf) - π [Code](https://github.com/llm360/k2v2_train) - π’ [Project Page](https://huggingface.co/LLM360/K2-V2)
|
| 12 |
|
| 13 |
+
K2-V2 is our most capable fully open model to date, and one of the strongest open-weight models in its class. It uses a 70B-parameter dense transformer architecture and represents the latest advancement in the LLM360 model family.
|
| 14 |
|
| 15 |
+
<img src="figures/sft-models.png" width="400" alt="K2-V2 SFT results"/>
|
| 16 |
|
| 17 |
+
Beyond standard competencies such as factual knowledge and conversational ability, K2-V2 demonstrates strong long-context consistency, deep mathematical understanding, and robust reasoning skills. These capabilities serve as building blocks for sophisticated downstream applications, such as solving complex math problems and executing agentic workflows.
|
| 18 |
|
| 19 |
+
<img src="figures/base-models.png" width="400" alt="K2-V2 GPQA results"/>
|
| 20 |
|
| 21 |
---
|
| 22 |
|
|
|
|
| 25 |
```python
|
| 26 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 27 |
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained("LLM360/K2-V2", device_map="auto")
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained("LLM360/K2-V2")
|
| 30 |
|
| 31 |
prompt = "Explain why the derivative of sin(x) is cos(x)."
|
| 32 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
| 38 |
|
| 39 |
## **Evaluation Summary**
|
| 40 |
|
| 41 |
+
Below we report performance across general, reasoning, mathematical, and coding benchmarks. Scores for K2-V2 checkpoints (base β mid-4) demonstrate the impact of staged mid-training on reasoning quality.
|
| 42 |
+
|
| 43 |
| Task / Model | base | mid-1 | mid-2 | mid-3 | mid-4 | Qwen2.5-72B | Llama3.0-70B | Llama3.1-70B | Olmo3-32B |
|
| 44 |
|--------------|------|-------|-------|-------|-------|--------------|---------------|---------------|------------|
|
|
|
|
|
|
|
|
|
|
| 45 |
| **General Tasks** | | | | | | | | | |
|
| 46 |
| **MMLU** | 74.3 | 74.4 | 73.5 | 75.0 | 75.2 | **86.1** | <u>79.5</u> | 79.3 | 75.2 |
|
| 47 |
| **MMLU-Pro** | 43.7 | 46.8 | 48.1 | **59.8** | 57.0 | <u>58.1</u> | 52.8 | 53.8 | 49.6 |
|
|
|
|
| 59 |
| **Coding Tasks** | | | | | | | | | |
|
| 60 |
| **MBPP** | 57.6 | 57.8 | 58.2 | 59.8 | 61.8 | **75.4** | <u>69.2</u> | 64.4 | 60.2 |
|
| 61 |
| **HUMANEVAL** | 50.0 | 51.2 | <u>53.7</u> | **54.3** | **54.3** | **54.3** | 42.1 | 50.6 | 36.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
+
Please refer to our [Tech Report](https://www.llm360.ai/reports/K2_V2_report.pdf) for detailed evaluation results.
|
| 65 |
|
| 66 |
---
|
| 67 |
|
| 68 |
## **Datasets & Mixtures**
|
| 69 |
|
| 70 |
+
K2-V2 training is organized into three stages, each using a transparent, publicly released mixture:
|
| 71 |
|
| 72 |
### **Pretraining Mix**
|
| 73 |
|
| 74 |
+
* Large-scale natural text corpus spanning web content, books, code, and multilingual sources
|
| 75 |
+
* Mixture designed for stable scaling and broad general-knowledge coverage
|
| 76 |
* ~12T tokens
|
| 77 |
|
| 78 |
### **Mid-Training Mix**
|
|
|
|
| 87 |
|
| 88 |
All mixtures, filtering rules, and data sources are fully released for reproducibility.
|
| 89 |
|
| 90 |
+
Please refer to our [Tech Report](https://www.llm360.ai/reports/K2_V2_report.pdf) for detailed datasets and mixtures information.
|
| 91 |
+
|
| 92 |
---
|
| 93 |
|
| 94 |
## **Model Description**
|
| 95 |
+
- **Model type:** K2-V2 follows a standard decoder-only transformer with grouped-query attention and RMSNorm.
|
| 96 |
+
- **Training stage:** Pre-training
|
| 97 |
- **Language(s) (NLP):** English
|
| 98 |
- **License:** Apache 2.0
|
| 99 |
|
|
|
|
| 102 |
| ----------- | ----------- |
|
| 103 |
| Total Parameters | 70B |
|
| 104 |
| Hidden Size | 8,192 |
|
| 105 |
+
| Intermediate Size (FFN) | 28,672 |
|
| 106 |
| Number of Attention Heads | 64 |
|
| 107 |
+
| Number of Layers | 80 |
|
| 108 |
+
| RMSNorm Ι | 1e-5 |
|
| 109 |
+
| Pre-training Seq Length | 8,192 |
|
| 110 |
| Max Mid-training Seq Length | 524,288 |
|
| 111 |
| Vocab Size | 250,000 |
|
| 112 |
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
|
| 116 |
+
## **Intended Use**
|
| 117 |
+
|
| 118 |
+
K2-V2 is designed for:
|
| 119 |
+
|
| 120 |
+
* research on large language models and reasoning
|
| 121 |
+
* downstream fine-tuning (e.g., instruction following, agents, domain models)
|
| 122 |
+
* experimentation with long-context architectures
|
| 123 |
+
* open, transparent benchmarking of LLM scaling
|
| 124 |
+
|
| 125 |
+
K2-V2 is **not** instruction-tuned. For aligned conversational use, please see **K2-V2-Instruct**.
|
| 126 |
+
|
| 127 |
---
|
| 128 |
|
| 129 |
+
## **Limitations**
|
| 130 |
|
| 131 |
+
* May generate incorrect or hallucinated content, especially when asked about facts not seen during training
|
| 132 |
+
* Not optimized for safety, moderation, or refusal behavior (base model)
|
| 133 |
+
* Long-context performance depends on prompt quality and retrieval structure
|
| 134 |
+
* Primarily trained on English; multilingual capabilities are limited
|
| 135 |
+
* Inference cost is high due to the 70B parameter size
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
|
| 139 |
+
## Citation
|
| 140 |
+
|
| 141 |
+
If you use K2-V2 in your research, please cite the following:
|
| 142 |
|
| 143 |
```
|
| 144 |
+
@misc{llm360_k2v2_2025,
|
| 145 |
title = {K2-V2: A 360-Open, Reasoning-Enhanced Open Foundation Model},
|
| 146 |
author = {K2 Team},
|
| 147 |
year = {2025},
|
|
|
|
| 150 |
primaryClass = {cs.CL}
|
| 151 |
}
|
| 152 |
```
|
|
|
|
|
|