# modeling_kbert_mtl.py import torch import torch.nn as nn from transformers import PreTrainedModel, BertConfig, BertModel def _bert_config_from_base_dict(base_cfg_dict: dict) -> BertConfig: if base_cfg_dict is None: raise ValueError("config.base_model_config is required for offline load.") base_cfg_dict = dict(base_cfg_dict) # shallow copy base_cfg_dict["model_type"] = "bert" allowed = set(BertConfig().to_dict().keys()) kwargs = {k: v for k, v in base_cfg_dict.items() if k in allowed} return BertConfig(**kwargs) class KbertMTL(PreTrainedModel): config_class = BertConfig def __init__(self, config): super().__init__(config) base_cfg_dict = getattr(config, "base_model_config", None) bert_cfg = _bert_config_from_base_dict(base_cfg_dict) self.bert = BertModel(bert_cfg) hidden = self.bert.config.hidden_size self.head_senti = nn.Linear(hidden, 5) self.head_act = nn.Linear(hidden, 6) self.head_emo = nn.Linear(hidden, 7) self.head_reg = nn.Linear(hidden, 3) self.has_token_type = getattr(self.bert.embeddings, "token_type_embeddings", None) is not None self.post_init() def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, **kwargs): kw = dict(input_ids=input_ids, attention_mask=attention_mask) if self.has_token_type and token_type_ids is not None: kw["token_type_ids"] = token_type_ids out = self.bert(**kw) h = out.last_hidden_state[:, 0] # [CLS] return { "logits_senti": self.head_senti(h), "logits_act": self.head_act(h), "logits_emo": self.head_emo(h), "pred_reg": self.head_reg(h), "last_hidden_state": out.last_hidden_state }