{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from transformers import pipeline\n", "\n", "fill_mask = pipeline(\n", " \"fill-mask\",\n", " model=\"latin_BERT_final\",\n", " tokenizer=\"latin_WP_tokenizer\"\n", ")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False False False False False\n" ] }, { "data": { "text/plain": [ "[{'score': 0.05949964374303818,\n", " 'token': 18,\n", " 'token_str': '.',\n", " 'sequence': 'roma in. est.'},\n", " {'score': 0.05125246196985245,\n", " 'token': 16,\n", " 'token_str': ',',\n", " 'sequence': 'roma in, est.'},\n", " {'score': 0.014972569420933723,\n", " 'token': 870,\n", " 'token_str': 'et',\n", " 'sequence': 'roma in et est.'},\n", " {'score': 0.009671307168900967,\n", " 'token': 879,\n", " 'token_str': '##que',\n", " 'sequence': 'roma inque est.'},\n", " {'score': 0.007990601472556591,\n", " 'token': 30,\n", " 'token_str': ':',\n", " 'sequence': 'roma in : est.'}]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fill_mask(\"Roma in [MASK] est.\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False False False False False\n" ] }, { "data": { "text/plain": [ "[{'score': 0.05949964374303818,\n", " 'token': 18,\n", " 'token_str': '.',\n", " 'sequence': 'ubi est.?.'},\n", " {'score': 0.05125246196985245,\n", " 'token': 16,\n", " 'token_str': ',',\n", " 'sequence': 'ubi est,?.'},\n", " {'score': 0.014972569420933723,\n", " 'token': 870,\n", " 'token_str': 'et',\n", " 'sequence': 'ubi est et?.'},\n", " {'score': 0.009671302512288094,\n", " 'token': 879,\n", " 'token_str': '##que',\n", " 'sequence': 'ubi estque?.'},\n", " {'score': 0.007990599609911442,\n", " 'token': 30,\n", " 'token_str': ':',\n", " 'sequence': 'ubi est :?.'}]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fill_mask(\"Ubi est [MASK] ?.\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False False False False False\n" ] }, { "data": { "text/plain": [ "[{'score': 0.05949964374303818,\n", " 'token': 18,\n", " 'token_str': '.',\n", " 'sequence': 'de honoratorum.'},\n", " {'score': 0.05125246196985245,\n", " 'token': 16,\n", " 'token_str': ',',\n", " 'sequence': 'de honoratorum,'},\n", " {'score': 0.014972569420933723,\n", " 'token': 870,\n", " 'token_str': 'et',\n", " 'sequence': 'de honoratorum et'},\n", " {'score': 0.009671302512288094,\n", " 'token': 879,\n", " 'token_str': '##que',\n", " 'sequence': 'de honoratorumque'},\n", " {'score': 0.007990601472556591,\n", " 'token': 30,\n", " 'token_str': ':',\n", " 'sequence': 'de honoratorum :'}]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# De honoratorum vehiculis\n", "fill_mask(\"De honoratorum [MASK]\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "bertenv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }