File size: 11,189 Bytes
dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 439bcc3 dbbb522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
#!/usr/bin/env python3
"""
Create and upload SafeTensors DIRECTLY to Hugging Face
Uses secure login - NO TOKEN IN CODE!
"""
import torch
import json
from safetensors.torch import save_file
from huggingface_hub import HfApi
import tempfile
from pathlib import Path
# ============ CONFIGURE ONLY THIS ============
REPO_NAME = "Luke-Bergen/mineral-nano-1" # CHANGE THIS to your HF username!
# =============================================
def initialize_weights(shape, init_type="normal", std=0.02):
"""Initialize tensor with proper initialization"""
if init_type == "normal":
return torch.randn(shape) * std
else:
return torch.zeros(shape)
def create_mineral_nano_weights():
"""Create all model weights for Mineral Nano 1 Vision"""
print("Creating Mineral Nano 1 Vision weights (4.1B parameters)...")
state_dict = {}
# Configuration
vocab_size = 64000
hidden_size = 2048
intermediate_size = 8192
num_layers = 28
num_heads = 32
num_kv_heads = 8
vision_hidden = 1536
vision_intermediate = 6144
vision_layers = 24
vision_patches = 1024
# ============ LANGUAGE MODEL ============
print("\n[1/4] Language model embeddings...")
state_dict["model.embed_tokens.weight"] = initialize_weights(
(vocab_size, hidden_size), "normal", 0.02
)
print("[2/4] Language model layers (28 layers)...")
for layer_idx in range(num_layers):
prefix = f"model.layers.{layer_idx}"
# Attention
state_dict[f"{prefix}.self_attn.q_proj.weight"] = initialize_weights(
(hidden_size, hidden_size), "normal", 0.02
)
state_dict[f"{prefix}.self_attn.k_proj.weight"] = initialize_weights(
(num_kv_heads * (hidden_size // num_heads), hidden_size), "normal", 0.02
)
state_dict[f"{prefix}.self_attn.v_proj.weight"] = initialize_weights(
(num_kv_heads * (hidden_size // num_heads), hidden_size), "normal", 0.02
)
state_dict[f"{prefix}.self_attn.o_proj.weight"] = initialize_weights(
(hidden_size, hidden_size), "normal", 0.02
)
# MLP
state_dict[f"{prefix}.mlp.gate_proj.weight"] = initialize_weights(
(intermediate_size, hidden_size), "normal", 0.02
)
state_dict[f"{prefix}.mlp.up_proj.weight"] = initialize_weights(
(intermediate_size, hidden_size), "normal", 0.02
)
state_dict[f"{prefix}.mlp.down_proj.weight"] = initialize_weights(
(hidden_size, intermediate_size), "normal", 0.02
)
# Norms
state_dict[f"{prefix}.input_layernorm.weight"] = torch.ones(hidden_size)
state_dict[f"{prefix}.post_attention_layernorm.weight"] = torch.ones(hidden_size)
if (layer_idx + 1) % 5 == 0:
print(f" ✓ {layer_idx + 1}/{num_layers} layers done")
state_dict["model.norm.weight"] = torch.ones(hidden_size)
state_dict["lm_head.weight"] = initialize_weights(
(vocab_size, hidden_size), "normal", 0.02
)
print("[3/4] Vision encoder (24 layers)...")
# ============ VISION ENCODER ============
state_dict["vision_model.embeddings.patch_embedding.weight"] = initialize_weights(
(vision_hidden, 3, 14, 14), "normal", 0.02
)
state_dict["vision_model.embeddings.class_embedding"] = initialize_weights(
(vision_hidden,), "normal", 0.02
)
state_dict["vision_model.embeddings.position_embedding.weight"] = initialize_weights(
(vision_patches + 1, vision_hidden), "normal", 0.02
)
for layer_idx in range(vision_layers):
prefix = f"vision_model.encoder.layers.{layer_idx}"
# Attention
state_dict[f"{prefix}.self_attn.q_proj.weight"] = initialize_weights(
(vision_hidden, vision_hidden), "normal", 0.02
)
state_dict[f"{prefix}.self_attn.q_proj.bias"] = torch.zeros(vision_hidden)
state_dict[f"{prefix}.self_attn.k_proj.weight"] = initialize_weights(
(vision_hidden, vision_hidden), "normal", 0.02
)
state_dict[f"{prefix}.self_attn.k_proj.bias"] = torch.zeros(vision_hidden)
state_dict[f"{prefix}.self_attn.v_proj.weight"] = initialize_weights(
(vision_hidden, vision_hidden), "normal", 0.02
)
state_dict[f"{prefix}.self_attn.v_proj.bias"] = torch.zeros(vision_hidden)
state_dict[f"{prefix}.self_attn.out_proj.weight"] = initialize_weights(
(vision_hidden, vision_hidden), "normal", 0.02
)
state_dict[f"{prefix}.self_attn.out_proj.bias"] = torch.zeros(vision_hidden)
# MLP
state_dict[f"{prefix}.mlp.fc1.weight"] = initialize_weights(
(vision_intermediate, vision_hidden), "normal", 0.02
)
state_dict[f"{prefix}.mlp.fc1.bias"] = torch.zeros(vision_intermediate)
state_dict[f"{prefix}.mlp.fc2.weight"] = initialize_weights(
(vision_hidden, vision_intermediate), "normal", 0.02
)
state_dict[f"{prefix}.mlp.fc2.bias"] = torch.zeros(vision_hidden)
# Norms
state_dict[f"{prefix}.layer_norm1.weight"] = torch.ones(vision_hidden)
state_dict[f"{prefix}.layer_norm1.bias"] = torch.zeros(vision_hidden)
state_dict[f"{prefix}.layer_norm2.weight"] = torch.ones(vision_hidden)
state_dict[f"{prefix}.layer_norm2.bias"] = torch.zeros(vision_hidden)
if (layer_idx + 1) % 5 == 0:
print(f" ✓ {layer_idx + 1}/{vision_layers} vision layers done")
state_dict["vision_model.post_layernorm.weight"] = torch.ones(vision_hidden)
state_dict["vision_model.post_layernorm.bias"] = torch.zeros(vision_hidden)
print("[4/4] Vision-language projector...")
# ============ PROJECTOR ============
state_dict["multi_modal_projector.linear_1.weight"] = initialize_weights(
(hidden_size, vision_hidden), "normal", 0.02
)
state_dict["multi_modal_projector.linear_1.bias"] = torch.zeros(hidden_size)
state_dict["multi_modal_projector.linear_2.weight"] = initialize_weights(
(hidden_size, hidden_size), "normal", 0.02
)
state_dict["multi_modal_projector.linear_2.bias"] = torch.zeros(hidden_size)
total_params = sum(t.numel() for t in state_dict.values())
print(f"\n✓ Created {total_params:,} parameters ({total_params/1e9:.2f}B)")
return state_dict
def upload_to_huggingface(state_dict, repo_name):
"""Upload SafeTensors directly to Hugging Face using saved credentials"""
print(f"\n{'='*60}")
print(f"Uploading to Hugging Face: {repo_name}")
print(f"{'='*60}")
# Initialize HF API (uses saved token from huggingface-cli login)
api = HfApi()
# Create temporary directory for files
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = Path(temp_dir)
# Split into shards
print("\nCreating sharded files...")
max_shard_size = 4.5 * 1024 * 1024 * 1024 # 4.5 GB
shards = []
current_shard = {}
current_size = 0
shard_idx = 1
for key, tensor in state_dict.items():
tensor_size = tensor.numel() * tensor.element_size()
if current_size + tensor_size > max_shard_size and current_shard:
# Save shard
shard_file = f"model-{shard_idx:05d}-of-00002.safetensors"
shard_path = temp_path / shard_file
print(f" Creating {shard_file} ({current_size / 1e9:.2f} GB)...")
save_file(current_shard, str(shard_path))
shards.append((shard_file, list(current_shard.keys())))
current_shard = {}
current_size = 0
shard_idx += 1
current_shard[key] = tensor
current_size += tensor_size
# Save final shard
if current_shard:
shard_file = f"model-{shard_idx:05d}-of-00002.safetensors"
shard_path = temp_path / shard_file
print(f" Creating {shard_file} ({current_size / 1e9:.2f} GB)...")
save_file(current_shard, str(shard_path))
shards.append((shard_file, list(current_shard.keys())))
# Create index
index = {
"metadata": {
"total_size": sum(t.numel() * t.element_size() for t in state_dict.values())
},
"weight_map": {}
}
for shard_file, keys in shards:
for key in keys:
index["weight_map"][key] = shard_file
index_path = temp_path / "model.safetensors.index.json"
with open(index_path, "w") as f:
json.dump(index, f, indent=2)
print(f"\n{'='*60}")
print("Uploading to Hugging Face...")
print(f"{'='*60}")
# Upload all files
for shard_file, _ in shards:
file_path = temp_path / shard_file
print(f"\n📤 Uploading {shard_file}...")
api.upload_file(
path_or_fileobj=str(file_path),
path_in_repo=shard_file,
repo_id=repo_name,
repo_type="model",
commit_message=f"Add {shard_file}"
)
print(f" ✓ Uploaded!")
# Upload index
print(f"\n📤 Uploading model.safetensors.index.json...")
api.upload_file(
path_or_fileobj=str(index_path),
path_in_repo="model.safetensors.index.json",
repo_id=repo_name,
repo_type="model",
commit_message="Add model index"
)
print(f" ✓ Uploaded!")
print(f"\n{'='*60}")
print(f"✅ SUCCESS! Model uploaded to:")
print(f" https://huggingface.co/{repo_name}")
print(f"{'='*60}")
if __name__ == "__main__":
print("="*60)
print("Mineral Nano 1 - Direct HuggingFace Upload")
print("="*60)
# Verify configuration
if "your-username" in REPO_NAME:
print("\n❌ ERROR: Please configure the script first!")
print("\nEdit this line at the top of the script:")
print(f' REPO_NAME = "your-username/mineral-nano-1"')
print("\nChange 'your-username' to YOUR HuggingFace username")
print("\nThen run: huggingface-cli login")
print("(Paste your token when prompted)")
exit(1)
print(f"\nTarget repository: {REPO_NAME}")
print("This will take 10-20 minutes...")
print("\nMake sure you ran: huggingface-cli login")
input("\nPress ENTER to continue or Ctrl+C to cancel...")
# Create weights
print("\n" + "="*60)
print("STEP 1: Creating model weights")
print("="*60)
state_dict = create_mineral_nano_weights()
# Upload to HF
print("\n" + "="*60)
print("STEP 2: Uploading to Hugging Face")
print("="*60)
upload_to_huggingface(state_dict, REPO_NAME)
print("\n✅ All done! Your model is live on Hugging Face!") |