biogpt-ner
This model is a fine-tuned version of microsoft/biogpt on the ncbi_disease dataset. It achieves the following results on the evaluation set:
- Loss: 0.1935
- Disease: {'precision': 0.5545851528384279, 'recall': 0.6195121951219512, 'f1': 0.5852534562211981, 'number': 1640}
- Overall Precision: 0.5546
- Overall Recall: 0.6195
- Overall F1: 0.5853
- Overall Accuracy: 0.9500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Disease | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|---|---|---|---|---|---|---|---|---|
| 0.3019 | 1.0 | 680 | 0.1758 | {'precision': 0.46767617938264416, 'recall': 0.4896341463414634, 'f1': 0.4784033363121835, 'number': 1640} | 0.4677 | 0.4896 | 0.4784 | 0.9394 |
| 0.1606 | 2.0 | 1360 | 0.1641 | {'precision': 0.5137519460300985, 'recall': 0.6036585365853658, 'f1': 0.5550883095037846, 'number': 1640} | 0.5138 | 0.6037 | 0.5551 | 0.9455 |
| 0.0743 | 3.0 | 2040 | 0.1935 | {'precision': 0.5545851528384279, 'recall': 0.6195121951219512, 'f1': 0.5852534562211981, 'number': 1640} | 0.5546 | 0.6195 | 0.5853 | 0.9500 |
Framework versions
- Transformers 4.51.2
- Pytorch 2.6.0
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- -
Model tree for MANAN-B94/biogpt-ner
Base model
microsoft/biogpt