--- library_name: peft license: mit base_model: deepset/gbert-base tags: - base_model:adapter:deepset/gbert-base - lora - transformers metrics: - accuracy model-index: - name: gbert_success4_lora results: [] --- # gbert_success4_lora This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6821 - Accuracy: 0.5788 - Macro F1: 0.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.7478 | 1.0 | 340 | 0.7106 | 0.5729 | 0.5461 | | 0.6929 | 2.0 | 680 | 0.6870 | 0.5773 | 0.5744 | | 0.6908 | 3.0 | 1020 | 0.6821 | 0.5788 | 0.5714 | ### Framework versions - PEFT 0.17.1 - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0