Create hyperparams.yaml
Browse files- hyperparams.yaml +165 -0
hyperparams.yaml
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
| 2 |
+
seed: 2024
|
| 3 |
+
__set_seed: !apply:torch.manual_seed [!ref <seed>]
|
| 4 |
+
|
| 5 |
+
skip_training: True
|
| 6 |
+
|
| 7 |
+
# Hparams NEEDED
|
| 8 |
+
HPARAMS_NEEDED: ["log_softmax"]
|
| 9 |
+
# Modules Needed
|
| 10 |
+
MODULES_NEEDED: ["whisper"]
|
| 11 |
+
|
| 12 |
+
output_folder: !ref output_folder_whisper
|
| 13 |
+
pretrained_path: Macedonian-ASR/buki-whisper-capitalised-2.0
|
| 14 |
+
output_wer_folder: !ref <output_folder>/
|
| 15 |
+
save_folder: !ref <output_folder>/save
|
| 16 |
+
train_log: !ref <output_folder>/train_log.txt
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# URL for the biggest Fairseq english whisper model.
|
| 20 |
+
whisper_hub: openai/whisper-large-v3
|
| 21 |
+
|
| 22 |
+
# Normalize inputs with the same normalization done in the paper (https://cdn.openai.com/papers/whisper.pdf). Refer to Appendix C for further information.
|
| 23 |
+
normalized_transcripts: False
|
| 24 |
+
restore_capitalization: False
|
| 25 |
+
|
| 26 |
+
# Data files
|
| 27 |
+
language: "macedonian"
|
| 28 |
+
data_folder: "../../data/combined_data/speechbrain_splits"
|
| 29 |
+
accented_letters: True
|
| 30 |
+
|
| 31 |
+
ckpt_interval_minutes: 30 # save checkpoint every N min
|
| 32 |
+
|
| 33 |
+
####################### Training Parameters ####################################
|
| 34 |
+
freeze_whisper: False
|
| 35 |
+
freeze_encoder: True
|
| 36 |
+
number_of_epochs: 50
|
| 37 |
+
weight_decay: 0.01
|
| 38 |
+
lr_whisper: 1e-5
|
| 39 |
+
warmup_steps: 500
|
| 40 |
+
max_grad_norm: 2.0
|
| 41 |
+
precision: fp16 # bf16, fp16 or fp32
|
| 42 |
+
eval_precision: fp16
|
| 43 |
+
sample_rate: 16000
|
| 44 |
+
|
| 45 |
+
# With data_parallel batch_size is split into N jobs
|
| 46 |
+
batch_size: 6
|
| 47 |
+
test_batch_size: 1
|
| 48 |
+
grad_accumulation_factor: 2
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# Decoding parameters
|
| 52 |
+
min_decode_ratio: 0.0
|
| 53 |
+
max_decode_ratio: 1.0
|
| 54 |
+
test_beam_size: 8
|
| 55 |
+
|
| 56 |
+
####################### Model Parameters #######################################
|
| 57 |
+
train_dataloader_opts:
|
| 58 |
+
batch_size: !ref <batch_size>
|
| 59 |
+
|
| 60 |
+
valid_dataloader_opts:
|
| 61 |
+
batch_size: !ref <batch_size>
|
| 62 |
+
|
| 63 |
+
test_dataloader_opts:
|
| 64 |
+
batch_size: !ref <test_batch_size>
|
| 65 |
+
|
| 66 |
+
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
|
| 67 |
+
limit: !ref <number_of_epochs>
|
| 68 |
+
|
| 69 |
+
############################## Augmentations ###################################
|
| 70 |
+
|
| 71 |
+
# Speed perturbation
|
| 72 |
+
speed_perturb: !new:speechbrain.augment.time_domain.SpeedPerturb
|
| 73 |
+
orig_freq: 16000
|
| 74 |
+
speeds: [95, 100, 105]
|
| 75 |
+
|
| 76 |
+
# Frequency drop: randomly drops a number of frequency bands to zero.
|
| 77 |
+
drop_freq: !new:speechbrain.augment.time_domain.DropFreq
|
| 78 |
+
drop_freq_low: 0
|
| 79 |
+
drop_freq_high: 1
|
| 80 |
+
drop_freq_count_low: 1
|
| 81 |
+
drop_freq_count_high: 3
|
| 82 |
+
drop_freq_width: 0.05
|
| 83 |
+
|
| 84 |
+
# Time drop: randomly drops a number of temporal chunks.
|
| 85 |
+
drop_chunk: !new:speechbrain.augment.time_domain.DropChunk
|
| 86 |
+
drop_length_low: 1000
|
| 87 |
+
drop_length_high: 2000
|
| 88 |
+
drop_count_low: 1
|
| 89 |
+
drop_count_high: 5
|
| 90 |
+
|
| 91 |
+
# Augmenter: Combines previously defined augmentations to perform data augmentation
|
| 92 |
+
wav_augment: !new:speechbrain.augment.augmenter.Augmenter
|
| 93 |
+
concat_original: False
|
| 94 |
+
min_augmentations: 1
|
| 95 |
+
max_augmentations: 3
|
| 96 |
+
augment_prob: 0.5
|
| 97 |
+
augmentations: [
|
| 98 |
+
!ref <speed_perturb>,
|
| 99 |
+
!ref <drop_freq>,
|
| 100 |
+
!ref <drop_chunk>]
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
############################## Models ##########################################
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
whisper: !new:speechbrain.lobes.models.huggingface_transformers.whisper.Whisper
|
| 107 |
+
source: !ref <whisper_hub>
|
| 108 |
+
freeze: !ref <freeze_whisper>
|
| 109 |
+
freeze_encoder: !ref <freeze_encoder>
|
| 110 |
+
save_path: !ref <save_folder>/whisper_checkpoint
|
| 111 |
+
language: !ref <language>
|
| 112 |
+
task: "transcribe"
|
| 113 |
+
|
| 114 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
| 115 |
+
apply_log: True
|
| 116 |
+
|
| 117 |
+
nll_loss: !name:speechbrain.nnet.losses.nll_loss
|
| 118 |
+
|
| 119 |
+
modules:
|
| 120 |
+
whisper: !ref <whisper>
|
| 121 |
+
|
| 122 |
+
############################## Decoding & optimiser ############################
|
| 123 |
+
|
| 124 |
+
whisper_opt_class: !name:torch.optim.AdamW
|
| 125 |
+
lr: !ref <lr_whisper>
|
| 126 |
+
weight_decay: !ref <weight_decay>
|
| 127 |
+
|
| 128 |
+
valid_search: !new:speechbrain.decoders.seq2seq.S2SWhisperGreedySearcher
|
| 129 |
+
model: !ref <whisper>
|
| 130 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
| 131 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
| 132 |
+
|
| 133 |
+
test_search: !new:speechbrain.decoders.seq2seq.S2SWhisperBeamSearcher
|
| 134 |
+
module: [!ref <whisper>]
|
| 135 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
| 136 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
| 137 |
+
beam_size: !ref <test_beam_size>
|
| 138 |
+
|
| 139 |
+
lr_annealing_whisper: !new:speechbrain.nnet.schedulers.NoamScheduler
|
| 140 |
+
lr_initial: !ref <lr_whisper>
|
| 141 |
+
n_warmup_steps: !ref <warmup_steps>
|
| 142 |
+
|
| 143 |
+
############################## Logging and Pretrainer ##########################
|
| 144 |
+
|
| 145 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
| 146 |
+
checkpoints_dir: !ref <save_folder>
|
| 147 |
+
recoverables:
|
| 148 |
+
whisper: !ref <whisper>
|
| 149 |
+
scheduler_whisper: !ref <lr_annealing_whisper>
|
| 150 |
+
counter: !ref <epoch_counter>
|
| 151 |
+
|
| 152 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
| 153 |
+
loadables:
|
| 154 |
+
whisper: !ref <whisper>
|
| 155 |
+
paths:
|
| 156 |
+
whisper: !ref <pretrained_path>/model.ckpt
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
| 160 |
+
save_file: !ref <train_log>
|
| 161 |
+
|
| 162 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
| 163 |
+
|
| 164 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
| 165 |
+
split_tokens: True
|