--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 1.6482 - Answer: {'precision': 0.014705882352941176, 'recall': 0.021013597033374538, 'f1': 0.017302798982188297, 'number': 809} - Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} - Question: {'precision': 0.12369791666666667, 'recall': 0.0892018779342723, 'f1': 0.10365521003818877, 'number': 1065} - Overall Precision: 0.0582 - Overall Recall: 0.0562 - Overall F1: 0.0572 - Overall Accuracy: 0.3618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.8182 | 1.0 | 10 | 1.6482 | {'precision': 0.014705882352941176, 'recall': 0.021013597033374538, 'f1': 0.017302798982188297, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.12369791666666667, 'recall': 0.0892018779342723, 'f1': 0.10365521003818877, 'number': 1065} | 0.0582 | 0.0562 | 0.0572 | 0.3618 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.15.2