Upload 11 files
Browse files- added_tokens.json +652 -0
- build_mlp.py +205 -0
- config.json +37 -0
- configuration_internlm.py +164 -0
- generation_config.json +7 -0
- modeling_internlm2.py +1270 -0
- pytorch_model.bin.index.json +554 -0
- special_tokens_map.json +6 -0
- tokenization_internlm.py +240 -0
- tokenizer.model +3 -0
- tokenizer_config.json +16 -0
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,652 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "<0>": 92544,
         | 
| 3 | 
            +
              "<100>": 92545,
         | 
| 4 | 
            +
              "<101>": 92546,
         | 
| 5 | 
            +
              "<102>": 92547,
         | 
| 6 | 
            +
              "<103>": 92548,
         | 
| 7 | 
            +
              "<104>": 92549,
         | 
| 8 | 
            +
              "<105>": 92550,
         | 
| 9 | 
            +
              "<106>": 92551,
         | 
| 10 | 
            +
              "<107>": 92552,
         | 
| 11 | 
            +
              "<108>": 92553,
         | 
| 12 | 
            +
              "<109>": 92554,
         | 
| 13 | 
            +
              "<10>": 92555,
         | 
| 14 | 
            +
              "<110>": 92556,
         | 
| 15 | 
            +
              "<111>": 92557,
         | 
| 16 | 
            +
              "<112>": 92558,
         | 
| 17 | 
            +
              "<113>": 92559,
         | 
| 18 | 
            +
              "<114>": 92560,
         | 
| 19 | 
            +
              "<115>": 92561,
         | 
| 20 | 
            +
              "<116>": 92562,
         | 
| 21 | 
            +
              "<117>": 92563,
         | 
| 22 | 
            +
              "<118>": 92564,
         | 
| 23 | 
            +
              "<119>": 92565,
         | 
| 24 | 
            +
              "<11>": 92566,
         | 
| 25 | 
            +
              "<120>": 92567,
         | 
| 26 | 
            +
              "<121>": 92568,
         | 
| 27 | 
            +
              "<122>": 92569,
         | 
| 28 | 
            +
              "<123>": 92570,
         | 
| 29 | 
            +
              "<124>": 92571,
         | 
| 30 | 
            +
              "<125>": 92572,
         | 
| 31 | 
            +
              "<126>": 92573,
         | 
| 32 | 
            +
              "<127>": 92574,
         | 
| 33 | 
            +
              "<128>": 92575,
         | 
| 34 | 
            +
              "<129>": 92576,
         | 
| 35 | 
            +
              "<12>": 92577,
         | 
| 36 | 
            +
              "<130>": 92578,
         | 
| 37 | 
            +
              "<131>": 92579,
         | 
| 38 | 
            +
              "<132>": 92580,
         | 
| 39 | 
            +
              "<133>": 92581,
         | 
| 40 | 
            +
              "<134>": 92582,
         | 
| 41 | 
            +
              "<135>": 92583,
         | 
| 42 | 
            +
              "<136>": 92584,
         | 
| 43 | 
            +
              "<137>": 92585,
         | 
| 44 | 
            +
              "<138>": 92586,
         | 
| 45 | 
            +
              "<139>": 92587,
         | 
| 46 | 
            +
              "<13>": 92588,
         | 
| 47 | 
            +
              "<140>": 92589,
         | 
| 48 | 
            +
              "<141>": 92590,
         | 
| 49 | 
            +
              "<142>": 92591,
         | 
| 50 | 
            +
              "<143>": 92592,
         | 
| 51 | 
            +
              "<144>": 92593,
         | 
| 52 | 
            +
              "<145>": 92594,
         | 
| 53 | 
            +
              "<146>": 92595,
         | 
| 54 | 
            +
              "<147>": 92596,
         | 
| 55 | 
            +
              "<148>": 92597,
         | 
| 56 | 
            +
              "<149>": 92598,
         | 
| 57 | 
            +
              "<14>": 92599,
         | 
| 58 | 
            +
              "<150>": 92600,
         | 
| 59 | 
            +
              "<151>": 92601,
         | 
| 60 | 
            +
              "<152>": 92602,
         | 
| 61 | 
            +
              "<153>": 92603,
         | 
| 62 | 
            +
              "<154>": 92604,
         | 
| 63 | 
            +
              "<155>": 92605,
         | 
| 64 | 
            +
              "<156>": 92606,
         | 
| 65 | 
            +
              "<157>": 92607,
         | 
| 66 | 
            +
              "<158>": 92608,
         | 
| 67 | 
            +
              "<159>": 92609,
         | 
| 68 | 
            +
              "<15>": 92610,
         | 
| 69 | 
            +
              "<160>": 92611,
         | 
| 70 | 
            +
              "<161>": 92612,
         | 
| 71 | 
            +
              "<162>": 92613,
         | 
| 72 | 
            +
              "<163>": 92614,
         | 
| 73 | 
            +
              "<164>": 92615,
         | 
| 74 | 
            +
              "<165>": 92616,
         | 
| 75 | 
            +
              "<166>": 92617,
         | 
| 76 | 
            +
              "<167>": 92618,
         | 
| 77 | 
            +
              "<168>": 92619,
         | 
| 78 | 
            +
              "<169>": 92620,
         | 
| 79 | 
            +
              "<16>": 92621,
         | 
| 80 | 
            +
              "<170>": 92622,
         | 
| 81 | 
            +
              "<171>": 92623,
         | 
| 82 | 
            +
              "<172>": 92624,
         | 
| 83 | 
            +
              "<173>": 92625,
         | 
| 84 | 
            +
              "<174>": 92626,
         | 
| 85 | 
            +
              "<175>": 92627,
         | 
| 86 | 
            +
              "<176>": 92628,
         | 
| 87 | 
            +
              "<177>": 92629,
         | 
| 88 | 
            +
              "<178>": 92630,
         | 
| 89 | 
            +
              "<179>": 92631,
         | 
| 90 | 
            +
              "<17>": 92632,
         | 
| 91 | 
            +
              "<180>": 92633,
         | 
| 92 | 
            +
              "<181>": 92634,
         | 
| 93 | 
            +
              "<182>": 92635,
         | 
| 94 | 
            +
              "<183>": 92636,
         | 
| 95 | 
            +
              "<184>": 92637,
         | 
| 96 | 
            +
              "<185>": 92638,
         | 
| 97 | 
            +
              "<186>": 92639,
         | 
| 98 | 
            +
              "<187>": 92640,
         | 
| 99 | 
            +
              "<188>": 92641,
         | 
| 100 | 
            +
              "<189>": 92642,
         | 
| 101 | 
            +
              "<18>": 92643,
         | 
| 102 | 
            +
              "<190>": 92644,
         | 
| 103 | 
            +
              "<191>": 92645,
         | 
| 104 | 
            +
              "<192>": 92646,
         | 
| 105 | 
            +
              "<193>": 92647,
         | 
| 106 | 
            +
              "<194>": 92648,
         | 
| 107 | 
            +
              "<195>": 92649,
         | 
| 108 | 
            +
              "<196>": 92650,
         | 
| 109 | 
            +
              "<197>": 92651,
         | 
| 110 | 
            +
              "<198>": 92652,
         | 
| 111 | 
            +
              "<199>": 92653,
         | 
| 112 | 
            +
              "<19>": 92654,
         | 
| 113 | 
            +
              "<1>": 92655,
         | 
| 114 | 
            +
              "<200>": 92656,
         | 
| 115 | 
            +
              "<201>": 92657,
         | 
| 116 | 
            +
              "<202>": 92658,
         | 
| 117 | 
            +
              "<203>": 92659,
         | 
| 118 | 
            +
              "<204>": 92660,
         | 
| 119 | 
            +
              "<205>": 92661,
         | 
| 120 | 
            +
              "<206>": 92662,
         | 
| 121 | 
            +
              "<207>": 92663,
         | 
| 122 | 
            +
              "<208>": 92664,
         | 
| 123 | 
            +
              "<209>": 92665,
         | 
| 124 | 
            +
              "<20>": 92666,
         | 
| 125 | 
            +
              "<210>": 92667,
         | 
| 126 | 
            +
              "<211>": 92668,
         | 
| 127 | 
            +
              "<212>": 92669,
         | 
| 128 | 
            +
              "<213>": 92670,
         | 
| 129 | 
            +
              "<214>": 92671,
         | 
| 130 | 
            +
              "<215>": 92672,
         | 
| 131 | 
            +
              "<216>": 92673,
         | 
| 132 | 
            +
              "<217>": 92674,
         | 
| 133 | 
            +
              "<218>": 92675,
         | 
| 134 | 
            +
              "<219>": 92676,
         | 
| 135 | 
            +
              "<21>": 92677,
         | 
| 136 | 
            +
              "<220>": 92678,
         | 
| 137 | 
            +
              "<221>": 92679,
         | 
| 138 | 
            +
              "<222>": 92680,
         | 
| 139 | 
            +
              "<223>": 92681,
         | 
| 140 | 
            +
              "<224>": 92682,
         | 
| 141 | 
            +
              "<225>": 92683,
         | 
| 142 | 
            +
              "<226>": 92684,
         | 
| 143 | 
            +
              "<227>": 92685,
         | 
| 144 | 
            +
              "<228>": 92686,
         | 
| 145 | 
            +
              "<229>": 92687,
         | 
| 146 | 
            +
              "<22>": 92688,
         | 
| 147 | 
            +
              "<230>": 92689,
         | 
| 148 | 
            +
              "<231>": 92690,
         | 
| 149 | 
            +
              "<232>": 92691,
         | 
| 150 | 
            +
              "<233>": 92692,
         | 
| 151 | 
            +
              "<234>": 92693,
         | 
| 152 | 
            +
              "<235>": 92694,
         | 
| 153 | 
            +
              "<236>": 92695,
         | 
| 154 | 
            +
              "<237>": 92696,
         | 
| 155 | 
            +
              "<238>": 92697,
         | 
| 156 | 
            +
              "<239>": 92698,
         | 
| 157 | 
            +
              "<23>": 92699,
         | 
| 158 | 
            +
              "<240>": 92700,
         | 
| 159 | 
            +
              "<241>": 92701,
         | 
| 160 | 
            +
              "<242>": 92702,
         | 
| 161 | 
            +
              "<243>": 92703,
         | 
| 162 | 
            +
              "<244>": 92704,
         | 
| 163 | 
            +
              "<245>": 92705,
         | 
| 164 | 
            +
              "<246>": 92706,
         | 
| 165 | 
            +
              "<247>": 92707,
         | 
| 166 | 
            +
              "<248>": 92708,
         | 
| 167 | 
            +
              "<249>": 92709,
         | 
| 168 | 
            +
              "<24>": 92710,
         | 
| 169 | 
            +
              "<250>": 92711,
         | 
| 170 | 
            +
              "<251>": 92712,
         | 
| 171 | 
            +
              "<252>": 92713,
         | 
| 172 | 
            +
              "<253>": 92714,
         | 
| 173 | 
            +
              "<254>": 92715,
         | 
| 174 | 
            +
              "<255>": 92716,
         | 
| 175 | 
            +
              "<256>": 92717,
         | 
| 176 | 
            +
              "<257>": 92718,
         | 
| 177 | 
            +
              "<258>": 92719,
         | 
| 178 | 
            +
              "<259>": 92720,
         | 
| 179 | 
            +
              "<25>": 92721,
         | 
| 180 | 
            +
              "<260>": 92722,
         | 
| 181 | 
            +
              "<261>": 92723,
         | 
| 182 | 
            +
              "<262>": 92724,
         | 
| 183 | 
            +
              "<263>": 92725,
         | 
| 184 | 
            +
              "<264>": 92726,
         | 
| 185 | 
            +
              "<265>": 92727,
         | 
| 186 | 
            +
              "<266>": 92728,
         | 
| 187 | 
            +
              "<267>": 92729,
         | 
| 188 | 
            +
              "<268>": 92730,
         | 
| 189 | 
            +
              "<269>": 92731,
         | 
| 190 | 
            +
              "<26>": 92732,
         | 
| 191 | 
            +
              "<270>": 92733,
         | 
| 192 | 
            +
              "<271>": 92734,
         | 
| 193 | 
            +
              "<272>": 92735,
         | 
| 194 | 
            +
              "<273>": 92736,
         | 
| 195 | 
            +
              "<274>": 92737,
         | 
| 196 | 
            +
              "<275>": 92738,
         | 
| 197 | 
            +
              "<276>": 92739,
         | 
| 198 | 
            +
              "<277>": 92740,
         | 
| 199 | 
            +
              "<278>": 92741,
         | 
| 200 | 
            +
              "<279>": 92742,
         | 
| 201 | 
            +
              "<27>": 92743,
         | 
| 202 | 
            +
              "<280>": 92744,
         | 
| 203 | 
            +
              "<281>": 92745,
         | 
| 204 | 
            +
              "<282>": 92746,
         | 
| 205 | 
            +
              "<283>": 92747,
         | 
| 206 | 
            +
              "<284>": 92748,
         | 
| 207 | 
            +
              "<285>": 92749,
         | 
| 208 | 
            +
              "<286>": 92750,
         | 
| 209 | 
            +
              "<287>": 92751,
         | 
| 210 | 
            +
              "<288>": 92752,
         | 
| 211 | 
            +
              "<289>": 92753,
         | 
| 212 | 
            +
              "<28>": 92754,
         | 
| 213 | 
            +
              "<290>": 92755,
         | 
| 214 | 
            +
              "<291>": 92756,
         | 
| 215 | 
            +
              "<292>": 92757,
         | 
| 216 | 
            +
              "<293>": 92758,
         | 
| 217 | 
            +
              "<294>": 92759,
         | 
| 218 | 
            +
              "<295>": 92760,
         | 
| 219 | 
            +
              "<296>": 92761,
         | 
| 220 | 
            +
              "<297>": 92762,
         | 
| 221 | 
            +
              "<298>": 92763,
         | 
| 222 | 
            +
              "<299>": 92764,
         | 
| 223 | 
            +
              "<29>": 92765,
         | 
| 224 | 
            +
              "<2>": 92766,
         | 
| 225 | 
            +
              "<300>": 92767,
         | 
| 226 | 
            +
              "<301>": 92768,
         | 
| 227 | 
            +
              "<302>": 92769,
         | 
| 228 | 
            +
              "<303>": 92770,
         | 
| 229 | 
            +
              "<304>": 92771,
         | 
| 230 | 
            +
              "<305>": 92772,
         | 
| 231 | 
            +
              "<306>": 92773,
         | 
| 232 | 
            +
              "<307>": 92774,
         | 
| 233 | 
            +
              "<308>": 92775,
         | 
| 234 | 
            +
              "<309>": 92776,
         | 
| 235 | 
            +
              "<30>": 92777,
         | 
| 236 | 
            +
              "<310>": 92778,
         | 
| 237 | 
            +
              "<311>": 92779,
         | 
| 238 | 
            +
              "<312>": 92780,
         | 
| 239 | 
            +
              "<313>": 92781,
         | 
| 240 | 
            +
              "<314>": 92782,
         | 
| 241 | 
            +
              "<315>": 92783,
         | 
| 242 | 
            +
              "<316>": 92784,
         | 
| 243 | 
            +
              "<317>": 92785,
         | 
| 244 | 
            +
              "<318>": 92786,
         | 
| 245 | 
            +
              "<319>": 92787,
         | 
| 246 | 
            +
              "<31>": 92788,
         | 
| 247 | 
            +
              "<320>": 92789,
         | 
| 248 | 
            +
              "<321>": 92790,
         | 
| 249 | 
            +
              "<322>": 92791,
         | 
| 250 | 
            +
              "<323>": 92792,
         | 
| 251 | 
            +
              "<324>": 92793,
         | 
| 252 | 
            +
              "<325>": 92794,
         | 
| 253 | 
            +
              "<326>": 92795,
         | 
| 254 | 
            +
              "<327>": 92796,
         | 
| 255 | 
            +
              "<328>": 92797,
         | 
| 256 | 
            +
              "<329>": 92798,
         | 
| 257 | 
            +
              "<32>": 92799,
         | 
| 258 | 
            +
              "<330>": 92800,
         | 
| 259 | 
            +
              "<331>": 92801,
         | 
| 260 | 
            +
              "<332>": 92802,
         | 
| 261 | 
            +
              "<333>": 92803,
         | 
| 262 | 
            +
              "<334>": 92804,
         | 
| 263 | 
            +
              "<335>": 92805,
         | 
| 264 | 
            +
              "<336>": 92806,
         | 
| 265 | 
            +
              "<337>": 92807,
         | 
| 266 | 
            +
              "<338>": 92808,
         | 
| 267 | 
            +
              "<339>": 92809,
         | 
| 268 | 
            +
              "<33>": 92810,
         | 
| 269 | 
            +
              "<340>": 92811,
         | 
| 270 | 
            +
              "<341>": 92812,
         | 
| 271 | 
            +
              "<342>": 92813,
         | 
| 272 | 
            +
              "<343>": 92814,
         | 
| 273 | 
            +
              "<344>": 92815,
         | 
| 274 | 
            +
              "<345>": 92816,
         | 
| 275 | 
            +
              "<346>": 92817,
         | 
| 276 | 
            +
              "<347>": 92818,
         | 
| 277 | 
            +
              "<348>": 92819,
         | 
| 278 | 
            +
              "<349>": 92820,
         | 
| 279 | 
            +
              "<34>": 92821,
         | 
| 280 | 
            +
              "<350>": 92822,
         | 
| 281 | 
            +
              "<351>": 92823,
         | 
| 282 | 
            +
              "<352>": 92824,
         | 
| 283 | 
            +
              "<353>": 92825,
         | 
| 284 | 
            +
              "<354>": 92826,
         | 
| 285 | 
            +
              "<355>": 92827,
         | 
| 286 | 
            +
              "<356>": 92828,
         | 
| 287 | 
            +
              "<357>": 92829,
         | 
| 288 | 
            +
              "<358>": 92830,
         | 
| 289 | 
            +
              "<359>": 92831,
         | 
| 290 | 
            +
              "<35>": 92832,
         | 
| 291 | 
            +
              "<360>": 92833,
         | 
| 292 | 
            +
              "<361>": 92834,
         | 
| 293 | 
            +
              "<362>": 92835,
         | 
| 294 | 
            +
              "<363>": 92836,
         | 
| 295 | 
            +
              "<364>": 92837,
         | 
| 296 | 
            +
              "<365>": 92838,
         | 
| 297 | 
            +
              "<366>": 92839,
         | 
| 298 | 
            +
              "<367>": 92840,
         | 
| 299 | 
            +
              "<368>": 92841,
         | 
| 300 | 
            +
              "<369>": 92842,
         | 
| 301 | 
            +
              "<36>": 92843,
         | 
| 302 | 
            +
              "<370>": 92844,
         | 
| 303 | 
            +
              "<371>": 92845,
         | 
| 304 | 
            +
              "<372>": 92846,
         | 
| 305 | 
            +
              "<373>": 92847,
         | 
| 306 | 
            +
              "<374>": 92848,
         | 
| 307 | 
            +
              "<375>": 92849,
         | 
| 308 | 
            +
              "<376>": 92850,
         | 
| 309 | 
            +
              "<377>": 92851,
         | 
| 310 | 
            +
              "<378>": 92852,
         | 
| 311 | 
            +
              "<379>": 92853,
         | 
| 312 | 
            +
              "<37>": 92854,
         | 
| 313 | 
            +
              "<380>": 92855,
         | 
| 314 | 
            +
              "<381>": 92856,
         | 
| 315 | 
            +
              "<382>": 92857,
         | 
| 316 | 
            +
              "<383>": 92858,
         | 
| 317 | 
            +
              "<384>": 92859,
         | 
| 318 | 
            +
              "<385>": 92860,
         | 
| 319 | 
            +
              "<386>": 92861,
         | 
| 320 | 
            +
              "<387>": 92862,
         | 
| 321 | 
            +
              "<388>": 92863,
         | 
| 322 | 
            +
              "<389>": 92864,
         | 
| 323 | 
            +
              "<38>": 92865,
         | 
| 324 | 
            +
              "<390>": 92866,
         | 
| 325 | 
            +
              "<391>": 92867,
         | 
| 326 | 
            +
              "<392>": 92868,
         | 
| 327 | 
            +
              "<393>": 92869,
         | 
| 328 | 
            +
              "<394>": 92870,
         | 
| 329 | 
            +
              "<395>": 92871,
         | 
| 330 | 
            +
              "<396>": 92872,
         | 
| 331 | 
            +
              "<397>": 92873,
         | 
| 332 | 
            +
              "<398>": 92874,
         | 
| 333 | 
            +
              "<399>": 92875,
         | 
| 334 | 
            +
              "<39>": 92876,
         | 
| 335 | 
            +
              "<3>": 92877,
         | 
| 336 | 
            +
              "<400>": 92878,
         | 
| 337 | 
            +
              "<401>": 92879,
         | 
| 338 | 
            +
              "<402>": 92880,
         | 
| 339 | 
            +
              "<403>": 92881,
         | 
| 340 | 
            +
              "<404>": 92882,
         | 
| 341 | 
            +
              "<405>": 92883,
         | 
| 342 | 
            +
              "<406>": 92884,
         | 
| 343 | 
            +
              "<407>": 92885,
         | 
| 344 | 
            +
              "<408>": 92886,
         | 
| 345 | 
            +
              "<409>": 92887,
         | 
| 346 | 
            +
              "<40>": 92888,
         | 
| 347 | 
            +
              "<410>": 92889,
         | 
| 348 | 
            +
              "<411>": 92890,
         | 
| 349 | 
            +
              "<412>": 92891,
         | 
| 350 | 
            +
              "<413>": 92892,
         | 
| 351 | 
            +
              "<414>": 92893,
         | 
| 352 | 
            +
              "<415>": 92894,
         | 
| 353 | 
            +
              "<416>": 92895,
         | 
| 354 | 
            +
              "<417>": 92896,
         | 
| 355 | 
            +
              "<418>": 92897,
         | 
| 356 | 
            +
              "<419>": 92898,
         | 
| 357 | 
            +
              "<41>": 92899,
         | 
| 358 | 
            +
              "<420>": 92900,
         | 
| 359 | 
            +
              "<421>": 92901,
         | 
| 360 | 
            +
              "<422>": 92902,
         | 
| 361 | 
            +
              "<423>": 92903,
         | 
| 362 | 
            +
              "<424>": 92904,
         | 
| 363 | 
            +
              "<425>": 92905,
         | 
| 364 | 
            +
              "<426>": 92906,
         | 
| 365 | 
            +
              "<427>": 92907,
         | 
| 366 | 
            +
              "<428>": 92908,
         | 
| 367 | 
            +
              "<429>": 92909,
         | 
| 368 | 
            +
              "<42>": 92910,
         | 
| 369 | 
            +
              "<430>": 92911,
         | 
| 370 | 
            +
              "<431>": 92912,
         | 
| 371 | 
            +
              "<432>": 92913,
         | 
| 372 | 
            +
              "<433>": 92914,
         | 
| 373 | 
            +
              "<434>": 92915,
         | 
| 374 | 
            +
              "<435>": 92916,
         | 
| 375 | 
            +
              "<436>": 92917,
         | 
| 376 | 
            +
              "<437>": 92918,
         | 
| 377 | 
            +
              "<438>": 92919,
         | 
| 378 | 
            +
              "<439>": 92920,
         | 
| 379 | 
            +
              "<43>": 92921,
         | 
| 380 | 
            +
              "<440>": 92922,
         | 
| 381 | 
            +
              "<441>": 92923,
         | 
| 382 | 
            +
              "<442>": 92924,
         | 
| 383 | 
            +
              "<443>": 92925,
         | 
| 384 | 
            +
              "<444>": 92926,
         | 
| 385 | 
            +
              "<445>": 92927,
         | 
| 386 | 
            +
              "<446>": 92928,
         | 
| 387 | 
            +
              "<447>": 92929,
         | 
| 388 | 
            +
              "<448>": 92930,
         | 
| 389 | 
            +
              "<449>": 92931,
         | 
| 390 | 
            +
              "<44>": 92932,
         | 
| 391 | 
            +
              "<450>": 92933,
         | 
| 392 | 
            +
              "<451>": 92934,
         | 
| 393 | 
            +
              "<452>": 92935,
         | 
| 394 | 
            +
              "<453>": 92936,
         | 
| 395 | 
            +
              "<454>": 92937,
         | 
| 396 | 
            +
              "<455>": 92938,
         | 
| 397 | 
            +
              "<456>": 92939,
         | 
| 398 | 
            +
              "<457>": 92940,
         | 
| 399 | 
            +
              "<458>": 92941,
         | 
| 400 | 
            +
              "<459>": 92942,
         | 
| 401 | 
            +
              "<45>": 92943,
         | 
| 402 | 
            +
              "<460>": 92944,
         | 
| 403 | 
            +
              "<461>": 92945,
         | 
| 404 | 
            +
              "<462>": 92946,
         | 
| 405 | 
            +
              "<463>": 92947,
         | 
| 406 | 
            +
              "<464>": 92948,
         | 
| 407 | 
            +
              "<465>": 92949,
         | 
| 408 | 
            +
              "<466>": 92950,
         | 
| 409 | 
            +
              "<467>": 92951,
         | 
| 410 | 
            +
              "<468>": 92952,
         | 
| 411 | 
            +
              "<469>": 92953,
         | 
| 412 | 
            +
              "<46>": 92954,
         | 
| 413 | 
            +
              "<470>": 92955,
         | 
| 414 | 
            +
              "<471>": 92956,
         | 
| 415 | 
            +
              "<472>": 92957,
         | 
| 416 | 
            +
              "<473>": 92958,
         | 
| 417 | 
            +
              "<474>": 92959,
         | 
| 418 | 
            +
              "<475>": 92960,
         | 
| 419 | 
            +
              "<476>": 92961,
         | 
| 420 | 
            +
              "<477>": 92962,
         | 
| 421 | 
            +
              "<478>": 92963,
         | 
| 422 | 
            +
              "<479>": 92964,
         | 
| 423 | 
            +
              "<47>": 92965,
         | 
| 424 | 
            +
              "<480>": 92966,
         | 
| 425 | 
            +
              "<481>": 92967,
         | 
| 426 | 
            +
              "<482>": 92968,
         | 
| 427 | 
            +
              "<483>": 92969,
         | 
| 428 | 
            +
              "<484>": 92970,
         | 
| 429 | 
            +
              "<485>": 92971,
         | 
| 430 | 
            +
              "<486>": 92972,
         | 
| 431 | 
            +
              "<487>": 92973,
         | 
| 432 | 
            +
              "<488>": 92974,
         | 
| 433 | 
            +
              "<489>": 92975,
         | 
| 434 | 
            +
              "<48>": 92976,
         | 
| 435 | 
            +
              "<490>": 92977,
         | 
| 436 | 
            +
              "<491>": 92978,
         | 
| 437 | 
            +
              "<492>": 92979,
         | 
| 438 | 
            +
              "<493>": 92980,
         | 
| 439 | 
            +
              "<494>": 92981,
         | 
| 440 | 
            +
              "<495>": 92982,
         | 
| 441 | 
            +
              "<496>": 92983,
         | 
| 442 | 
            +
              "<497>": 92984,
         | 
| 443 | 
            +
              "<498>": 92985,
         | 
| 444 | 
            +
              "<499>": 92986,
         | 
| 445 | 
            +
              "<49>": 92987,
         | 
| 446 | 
            +
              "<4>": 92988,
         | 
| 447 | 
            +
              "<500>": 92989,
         | 
| 448 | 
            +
              "<501>": 92990,
         | 
| 449 | 
            +
              "<502>": 92991,
         | 
| 450 | 
            +
              "<503>": 92992,
         | 
| 451 | 
            +
              "<504>": 92993,
         | 
| 452 | 
            +
              "<505>": 92994,
         | 
| 453 | 
            +
              "<506>": 92995,
         | 
| 454 | 
            +
              "<507>": 92996,
         | 
| 455 | 
            +
              "<508>": 92997,
         | 
| 456 | 
            +
              "<509>": 92998,
         | 
| 457 | 
            +
              "<50>": 92999,
         | 
| 458 | 
            +
              "<510>": 93000,
         | 
| 459 | 
            +
              "<511>": 93001,
         | 
| 460 | 
            +
              "<51>": 93002,
         | 
| 461 | 
            +
              "<52>": 93003,
         | 
| 462 | 
            +
              "<53>": 93004,
         | 
| 463 | 
            +
              "<54>": 93005,
         | 
| 464 | 
            +
              "<55>": 93006,
         | 
| 465 | 
            +
              "<56>": 93007,
         | 
| 466 | 
            +
              "<57>": 93008,
         | 
| 467 | 
            +
              "<58>": 93009,
         | 
| 468 | 
            +
              "<59>": 93010,
         | 
| 469 | 
            +
              "<5>": 93011,
         | 
| 470 | 
            +
              "<60>": 93012,
         | 
| 471 | 
            +
              "<61>": 93013,
         | 
| 472 | 
            +
              "<62>": 93014,
         | 
| 473 | 
            +
              "<63>": 93015,
         | 
| 474 | 
            +
              "<64>": 93016,
         | 
| 475 | 
            +
              "<65>": 93017,
         | 
| 476 | 
            +
              "<66>": 93018,
         | 
| 477 | 
            +
              "<67>": 93019,
         | 
| 478 | 
            +
              "<68>": 93020,
         | 
| 479 | 
            +
              "<69>": 93021,
         | 
| 480 | 
            +
              "<6>": 93022,
         | 
| 481 | 
            +
              "<70>": 93023,
         | 
| 482 | 
            +
              "<71>": 93024,
         | 
| 483 | 
            +
              "<72>": 93025,
         | 
| 484 | 
            +
              "<73>": 93026,
         | 
| 485 | 
            +
              "<74>": 93027,
         | 
| 486 | 
            +
              "<75>": 93028,
         | 
| 487 | 
            +
              "<76>": 93029,
         | 
| 488 | 
            +
              "<77>": 93030,
         | 
| 489 | 
            +
              "<78>": 93031,
         | 
| 490 | 
            +
              "<79>": 93032,
         | 
| 491 | 
            +
              "<7>": 93033,
         | 
| 492 | 
            +
              "<80>": 93034,
         | 
| 493 | 
            +
              "<81>": 93035,
         | 
| 494 | 
            +
              "<82>": 93036,
         | 
| 495 | 
            +
              "<83>": 93037,
         | 
| 496 | 
            +
              "<84>": 93038,
         | 
| 497 | 
            +
              "<85>": 93039,
         | 
| 498 | 
            +
              "<86>": 93040,
         | 
| 499 | 
            +
              "<87>": 93041,
         | 
| 500 | 
            +
              "<88>": 93042,
         | 
| 501 | 
            +
              "<89>": 93043,
         | 
| 502 | 
            +
              "<8>": 93044,
         | 
| 503 | 
            +
              "<90>": 93045,
         | 
| 504 | 
            +
              "<91>": 93046,
         | 
| 505 | 
            +
              "<92>": 93047,
         | 
| 506 | 
            +
              "<93>": 93048,
         | 
| 507 | 
            +
              "<94>": 93049,
         | 
| 508 | 
            +
              "<95>": 93050,
         | 
| 509 | 
            +
              "<96>": 93051,
         | 
| 510 | 
            +
              "<97>": 93052,
         | 
| 511 | 
            +
              "<98>": 93053,
         | 
| 512 | 
            +
              "<99>": 93054,
         | 
| 513 | 
            +
              "<9>": 93055,
         | 
| 514 | 
            +
              "<A#-1>": 93056,
         | 
| 515 | 
            +
              "<A#0>": 93057,
         | 
| 516 | 
            +
              "<A#1>": 93058,
         | 
| 517 | 
            +
              "<A#2>": 93059,
         | 
| 518 | 
            +
              "<A#3>": 93060,
         | 
| 519 | 
            +
              "<A#4>": 93061,
         | 
| 520 | 
            +
              "<A#5>": 93062,
         | 
| 521 | 
            +
              "<A#6>": 93063,
         | 
| 522 | 
            +
              "<A#7>": 93064,
         | 
| 523 | 
            +
              "<A#8>": 93065,
         | 
| 524 | 
            +
              "<A#9>": 93066,
         | 
| 525 | 
            +
              "<A-1>": 93067,
         | 
| 526 | 
            +
              "<A0>": 93068,
         | 
| 527 | 
            +
              "<A1>": 93069,
         | 
| 528 | 
            +
              "<A2>": 93070,
         | 
| 529 | 
            +
              "<A3>": 93071,
         | 
| 530 | 
            +
              "<A4>": 93072,
         | 
| 531 | 
            +
              "<A5>": 93073,
         | 
| 532 | 
            +
              "<A6>": 93074,
         | 
| 533 | 
            +
              "<A7>": 93075,
         | 
| 534 | 
            +
              "<A8>": 93076,
         | 
| 535 | 
            +
              "<A9>": 93077,
         | 
| 536 | 
            +
              "<B-1>": 93078,
         | 
| 537 | 
            +
              "<B0>": 93079,
         | 
| 538 | 
            +
              "<B1>": 93080,
         | 
| 539 | 
            +
              "<B2>": 93081,
         | 
| 540 | 
            +
              "<B3>": 93082,
         | 
| 541 | 
            +
              "<B4>": 93083,
         | 
| 542 | 
            +
              "<B5>": 93084,
         | 
| 543 | 
            +
              "<B6>": 93085,
         | 
| 544 | 
            +
              "<B7>": 93086,
         | 
| 545 | 
            +
              "<B8>": 93087,
         | 
| 546 | 
            +
              "<B9>": 93088,
         | 
| 547 | 
            +
              "<C#-1>": 93089,
         | 
| 548 | 
            +
              "<C#0>": 93090,
         | 
| 549 | 
            +
              "<C#1>": 93091,
         | 
| 550 | 
            +
              "<C#2>": 93092,
         | 
| 551 | 
            +
              "<C#3>": 93093,
         | 
| 552 | 
            +
              "<C#4>": 93094,
         | 
| 553 | 
            +
              "<C#5>": 93095,
         | 
| 554 | 
            +
              "<C#6>": 93096,
         | 
| 555 | 
            +
              "<C#7>": 93097,
         | 
| 556 | 
            +
              "<C#8>": 93098,
         | 
| 557 | 
            +
              "<C#9>": 93099,
         | 
| 558 | 
            +
              "<C-1>": 93100,
         | 
| 559 | 
            +
              "<C0>": 93101,
         | 
| 560 | 
            +
              "<C1>": 93102,
         | 
| 561 | 
            +
              "<C2>": 93103,
         | 
| 562 | 
            +
              "<C3>": 93104,
         | 
| 563 | 
            +
              "<C4>": 93105,
         | 
| 564 | 
            +
              "<C5>": 93106,
         | 
| 565 | 
            +
              "<C6>": 93107,
         | 
| 566 | 
            +
              "<C7>": 93108,
         | 
| 567 | 
            +
              "<C8>": 93109,
         | 
| 568 | 
            +
              "<C9>": 93110,
         | 
| 569 | 
            +
              "<D#-1>": 93111,
         | 
| 570 | 
            +
              "<D#0>": 93112,
         | 
| 571 | 
            +
              "<D#1>": 93113,
         | 
| 572 | 
            +
              "<D#2>": 93114,
         | 
| 573 | 
            +
              "<D#3>": 93115,
         | 
| 574 | 
            +
              "<D#4>": 93116,
         | 
| 575 | 
            +
              "<D#5>": 93117,
         | 
| 576 | 
            +
              "<D#6>": 93118,
         | 
| 577 | 
            +
              "<D#7>": 93119,
         | 
| 578 | 
            +
              "<D#8>": 93120,
         | 
| 579 | 
            +
              "<D#9>": 93121,
         | 
| 580 | 
            +
              "<D-1>": 93122,
         | 
| 581 | 
            +
              "<D0>": 93123,
         | 
| 582 | 
            +
              "<D1>": 93124,
         | 
| 583 | 
            +
              "<D2>": 93125,
         | 
| 584 | 
            +
              "<D3>": 93126,
         | 
| 585 | 
            +
              "<D4>": 93127,
         | 
| 586 | 
            +
              "<D5>": 93128,
         | 
| 587 | 
            +
              "<D6>": 93129,
         | 
| 588 | 
            +
              "<D7>": 93130,
         | 
| 589 | 
            +
              "<D8>": 93131,
         | 
| 590 | 
            +
              "<D9>": 93132,
         | 
| 591 | 
            +
              "<E-1>": 93133,
         | 
| 592 | 
            +
              "<E0>": 93134,
         | 
| 593 | 
            +
              "<E1>": 93135,
         | 
| 594 | 
            +
              "<E2>": 93136,
         | 
| 595 | 
            +
              "<E3>": 93137,
         | 
| 596 | 
            +
              "<E4>": 93138,
         | 
| 597 | 
            +
              "<E5>": 93139,
         | 
| 598 | 
            +
              "<E6>": 93140,
         | 
| 599 | 
            +
              "<E7>": 93141,
         | 
| 600 | 
            +
              "<E8>": 93142,
         | 
| 601 | 
            +
              "<E9>": 93143,
         | 
| 602 | 
            +
              "<F#-1>": 93144,
         | 
| 603 | 
            +
              "<F#0>": 93145,
         | 
| 604 | 
            +
              "<F#1>": 93146,
         | 
| 605 | 
            +
              "<F#2>": 93147,
         | 
| 606 | 
            +
              "<F#3>": 93148,
         | 
| 607 | 
            +
              "<F#4>": 93149,
         | 
| 608 | 
            +
              "<F#5>": 93150,
         | 
| 609 | 
            +
              "<F#6>": 93151,
         | 
| 610 | 
            +
              "<F#7>": 93152,
         | 
| 611 | 
            +
              "<F#8>": 93153,
         | 
| 612 | 
            +
              "<F#9>": 93154,
         | 
| 613 | 
            +
              "<F-1>": 93155,
         | 
| 614 | 
            +
              "<F0>": 93156,
         | 
| 615 | 
            +
              "<F1>": 93157,
         | 
| 616 | 
            +
              "<F2>": 93158,
         | 
| 617 | 
            +
              "<F3>": 93159,
         | 
| 618 | 
            +
              "<F4>": 93160,
         | 
| 619 | 
            +
              "<F5>": 93161,
         | 
| 620 | 
            +
              "<F6>": 93162,
         | 
| 621 | 
            +
              "<F7>": 93163,
         | 
| 622 | 
            +
              "<F8>": 93164,
         | 
| 623 | 
            +
              "<F9>": 93165,
         | 
| 624 | 
            +
              "<G#-1>": 93166,
         | 
| 625 | 
            +
              "<G#0>": 93167,
         | 
| 626 | 
            +
              "<G#1>": 93168,
         | 
| 627 | 
            +
              "<G#2>": 93169,
         | 
| 628 | 
            +
              "<G#3>": 93170,
         | 
| 629 | 
            +
              "<G#4>": 93171,
         | 
| 630 | 
            +
              "<G#5>": 93172,
         | 
| 631 | 
            +
              "<G#6>": 93173,
         | 
| 632 | 
            +
              "<G#7>": 93174,
         | 
| 633 | 
            +
              "<G#8>": 93175,
         | 
| 634 | 
            +
              "<G#9>": 93176,
         | 
| 635 | 
            +
              "<G-1>": 93177,
         | 
| 636 | 
            +
              "<G0>": 93178,
         | 
| 637 | 
            +
              "<G1>": 93179,
         | 
| 638 | 
            +
              "<G2>": 93180,
         | 
| 639 | 
            +
              "<G3>": 93181,
         | 
| 640 | 
            +
              "<G4>": 93182,
         | 
| 641 | 
            +
              "<G5>": 93183,
         | 
| 642 | 
            +
              "<G6>": 93184,
         | 
| 643 | 
            +
              "<G7>": 93185,
         | 
| 644 | 
            +
              "<G8>": 93186,
         | 
| 645 | 
            +
              "<G9>": 93187,
         | 
| 646 | 
            +
              "<bol>": 93188,
         | 
| 647 | 
            +
              "<bom>": 93189,
         | 
| 648 | 
            +
              "<bop>": 93190,
         | 
| 649 | 
            +
              "<eol>": 93191,
         | 
| 650 | 
            +
              "<eom>": 93192,
         | 
| 651 | 
            +
              "<eop>": 93193
         | 
| 652 | 
            +
            }
         | 
    	
        build_mlp.py
    ADDED
    
    | @@ -0,0 +1,205 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn as nn
         | 
| 3 | 
            +
            import re
         | 
| 4 | 
            +
            import math
         | 
| 5 | 
            +
            from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            def build_vision_tower():
         | 
| 9 | 
            +
                vision_tower = '/mnt/petrelfs/share_data/dongxiaoyi/share_models/clip_l_336'
         | 
| 10 | 
            +
                return CLIPVisionTower(vision_tower)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            def build_vision_projector():
         | 
| 14 | 
            +
                projector_type = 'mlp2x_gelu'
         | 
| 15 | 
            +
                mm_hidden_size = 1024
         | 
| 16 | 
            +
                hidden_size = 4096
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
         | 
| 19 | 
            +
                if mlp_gelu_match:
         | 
| 20 | 
            +
                    mlp_depth = int(mlp_gelu_match.group(1))
         | 
| 21 | 
            +
                    modules = [nn.Linear(mm_hidden_size, hidden_size)]
         | 
| 22 | 
            +
                    for _ in range(1, mlp_depth):
         | 
| 23 | 
            +
                        modules.append(nn.GELU())
         | 
| 24 | 
            +
                        modules.append(nn.Linear(hidden_size, hidden_size))
         | 
| 25 | 
            +
                    return nn.Sequential(*modules)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                if projector_type == 'identity':
         | 
| 28 | 
            +
                    return IdentityMap()
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                raise ValueError(f'Unknown projector type: {projector_type}')
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            class IdentityMap(nn.Module):
         | 
| 33 | 
            +
                def __init__(self):
         | 
| 34 | 
            +
                    super().__init__()
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                def forward(self, x, *args, **kwargs):
         | 
| 37 | 
            +
                    return x
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                @property
         | 
| 40 | 
            +
                def config(self):
         | 
| 41 | 
            +
                    return {"mm_projector_type": 'identity'}
         | 
| 42 | 
            +
             | 
| 43 | 
            +
             | 
| 44 | 
            +
            class CLIPVisionTower(nn.Module):
         | 
| 45 | 
            +
                def __init__(self, vision_tower):
         | 
| 46 | 
            +
                    super().__init__()
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                    self.is_loaded = False
         | 
| 49 | 
            +
                    self.is_resize_pos = False
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    self.vision_tower_name = vision_tower
         | 
| 52 | 
            +
                    self.select_layer = -1
         | 
| 53 | 
            +
                    self.select_feature = 'patch'
         | 
| 54 | 
            +
                    self.load_model()
         | 
| 55 | 
            +
                    #self.resize_pos()
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                def load_model(self):
         | 
| 58 | 
            +
                    self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
         | 
| 59 | 
            +
                    self.vision_tower.requires_grad_(False)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    self.is_loaded = True
         | 
| 62 | 
            +
                def resize_pos(self):
         | 
| 63 | 
            +
                    pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
         | 
| 64 | 
            +
                    pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
         | 
| 65 | 
            +
                    orig_size = 24
         | 
| 66 | 
            +
                    new_size = 16
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    if pos_embed_checkpoint.shape[1] == new_size ** 2 + 1:
         | 
| 69 | 
            +
                        self.is_resize_pos = True
         | 
| 70 | 
            +
                    else:
         | 
| 71 | 
            +
                        embedding_size = pos_embed_checkpoint.shape[-1]
         | 
| 72 | 
            +
                        num_extra_tokens = 1
         | 
| 73 | 
            +
                        new_num = new_size ** 2 + num_extra_tokens
         | 
| 74 | 
            +
                        print("Position interpolate from %dx%d to %dx%d" %
         | 
| 75 | 
            +
                              (orig_size, orig_size, new_size, new_size))
         | 
| 76 | 
            +
                        extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
         | 
| 77 | 
            +
                        # only the position tokens are interpolated
         | 
| 78 | 
            +
                        pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
         | 
| 79 | 
            +
                        pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
         | 
| 80 | 
            +
                                                        embedding_size).permute(
         | 
| 81 | 
            +
                                                            0, 3, 1, 2)
         | 
| 82 | 
            +
                        pos_tokens = torch.nn.functional.interpolate(pos_tokens,
         | 
| 83 | 
            +
                                                                     size=(new_size,
         | 
| 84 | 
            +
                                                                           new_size),
         | 
| 85 | 
            +
                                                                     mode='bicubic',
         | 
| 86 | 
            +
                                                                     align_corners=False)
         | 
| 87 | 
            +
                        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
         | 
| 88 | 
            +
                        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                        new_pos_embed = new_pos_embed.squeeze(0)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                        self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(new_num, 1024)
         | 
| 93 | 
            +
                        #self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(new_pos_embed.to(pos_embed_checkpoint.dtype))
         | 
| 94 | 
            +
                        #self.vision_tower.vision_model.embeddings.position_ids = torch.arange(new_num).expand((1, -1))
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                        self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(new_pos_embed.to(pos_embed_checkpoint.device).to(pos_embed_checkpoint.dtype))
         | 
| 97 | 
            +
                        self.vision_tower.vision_model.embeddings.position_ids = torch.arange(new_num).expand((1, -1)).to(pos_embed_checkpoint.device)
         | 
| 98 | 
            +
                        self.is_resize_pos = True
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def feature_select(self, image_forward_outs):
         | 
| 101 | 
            +
                    image_features = image_forward_outs.hidden_states[self.select_layer]
         | 
| 102 | 
            +
                    if self.select_feature == 'patch':
         | 
| 103 | 
            +
                        image_features = image_features[:, 1:]
         | 
| 104 | 
            +
                    elif self.select_feature == 'cls_patch':
         | 
| 105 | 
            +
                        image_features = image_features
         | 
| 106 | 
            +
                    else:
         | 
| 107 | 
            +
                        raise ValueError(f'Unexpected select feature: {self.select_feature}')
         | 
| 108 | 
            +
                    return image_features
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def forward(self, images):
         | 
| 111 | 
            +
                    if not self.is_loaded:
         | 
| 112 | 
            +
                        self.load_model()
         | 
| 113 | 
            +
                    if type(images) is list:
         | 
| 114 | 
            +
                        image_features = []
         | 
| 115 | 
            +
                        for image in images:
         | 
| 116 | 
            +
                            image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
         | 
| 117 | 
            +
                            image_feature = self.feature_select(image_forward_out).to(image.dtype)
         | 
| 118 | 
            +
                            image_features.append(image_feature)
         | 
| 119 | 
            +
                    else:
         | 
| 120 | 
            +
                        image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
         | 
| 121 | 
            +
                        image_features = self.feature_select(image_forward_outs).to(images.dtype)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    return image_features
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                @property
         | 
| 126 | 
            +
                def dummy_feature(self):
         | 
| 127 | 
            +
                    return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                @property
         | 
| 130 | 
            +
                def dtype(self):
         | 
| 131 | 
            +
                    return self.vision_tower.dtype
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                @property
         | 
| 134 | 
            +
                def device(self):
         | 
| 135 | 
            +
                    return self.vision_tower.device
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                @property
         | 
| 138 | 
            +
                def config(self):
         | 
| 139 | 
            +
                    if self.is_loaded:
         | 
| 140 | 
            +
                        return self.vision_tower.config
         | 
| 141 | 
            +
                    else:
         | 
| 142 | 
            +
                        return self.cfg_only
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                @property
         | 
| 145 | 
            +
                def hidden_size(self):
         | 
| 146 | 
            +
                    return self.config.hidden_size
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                @property
         | 
| 149 | 
            +
                def num_patches(self):
         | 
| 150 | 
            +
                    return (self.config.image_size // self.config.patch_size) ** 2
         | 
| 151 | 
            +
             | 
| 152 | 
            +
            class PLoRA(nn.Linear):
         | 
| 153 | 
            +
                def __init__(self,
         | 
| 154 | 
            +
                             in_features: int,
         | 
| 155 | 
            +
                             out_features: int,
         | 
| 156 | 
            +
                             bias: bool = True,
         | 
| 157 | 
            +
                             device=None,
         | 
| 158 | 
            +
                             dtype=None,
         | 
| 159 | 
            +
                             lora_r=8,
         | 
| 160 | 
            +
                             lora_alpha=16,
         | 
| 161 | 
            +
                             lora_dropout=0.05,
         | 
| 162 | 
            +
                             lora_len=0,
         | 
| 163 | 
            +
                             **kwargs) -> None:
         | 
| 164 | 
            +
                    super().__init__(in_features, out_features, bias, device, dtype)
         | 
| 165 | 
            +
                    self.lora_r = lora_r
         | 
| 166 | 
            +
                    self.lora_alpha = lora_alpha
         | 
| 167 | 
            +
                    self.lora_len = lora_len
         | 
| 168 | 
            +
                    if lora_dropout > 0.:
         | 
| 169 | 
            +
                        self.lora_dropout = nn.Dropout(p=lora_dropout)
         | 
| 170 | 
            +
                    else:
         | 
| 171 | 
            +
                        self.lora_dropout = lambda x: x
         | 
| 172 | 
            +
                    self.lora_scaling = self.lora_alpha / self.lora_r
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    self.Plora_A = nn.Linear(in_features,
         | 
| 175 | 
            +
                                            self.lora_r,
         | 
| 176 | 
            +
                                            bias=False,
         | 
| 177 | 
            +
                                            device=device,
         | 
| 178 | 
            +
                                            dtype=dtype)
         | 
| 179 | 
            +
                    self.Plora_B = nn.Linear(self.lora_r,
         | 
| 180 | 
            +
                                            out_features,
         | 
| 181 | 
            +
                                            bias=False,
         | 
| 182 | 
            +
                                            device=device,
         | 
| 183 | 
            +
                                            dtype=dtype)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    self.reset_parameters()
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                def reset_parameters(self):
         | 
| 188 | 
            +
                    if hasattr(self, 'lora_A'):
         | 
| 189 | 
            +
                        # initialize A the same way as the default for nn.Linear and B to zero
         | 
| 190 | 
            +
                        nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
         | 
| 191 | 
            +
                        nn.init.zeros_(self.lora_B.weight)
         | 
| 192 | 
            +
                        #print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                def forward(self, x, im_mask=None):
         | 
| 195 | 
            +
                    res = super().forward(x)
         | 
| 196 | 
            +
                    if im_mask is not None:
         | 
| 197 | 
            +
                        if torch.sum(im_mask) > 0:
         | 
| 198 | 
            +
                            part_x = x[im_mask]
         | 
| 199 | 
            +
                            res[im_mask] += self.Plora_B(self.Plora_A(
         | 
| 200 | 
            +
                                self.lora_dropout(part_x))) * self.lora_scaling
         | 
| 201 | 
            +
                        else:
         | 
| 202 | 
            +
                            part_x = x[:, :1]
         | 
| 203 | 
            +
                            res[:, :1] += self.Plora_B(self.Plora_A(
         | 
| 204 | 
            +
                                self.lora_dropout(part_x))) * 0
         | 
| 205 | 
            +
                    return res
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "/mnt/petrelfs/dingshuangrui/PuQu/internlm2-chat-7b",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "InternLM2ForCausalLM"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attn_implementation": "eager",
         | 
| 7 | 
            +
              "auto_map": {
         | 
| 8 | 
            +
                "AutoConfig": "configuration_internlm.InternLMConfig",
         | 
| 9 | 
            +
                "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
         | 
| 10 | 
            +
                "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
         | 
| 11 | 
            +
              },
         | 
| 12 | 
            +
              "bias": false,
         | 
| 13 | 
            +
              "bos_token_id": 1,
         | 
| 14 | 
            +
              "eos_token_id": 2,
         | 
| 15 | 
            +
              "hidden_act": "silu",
         | 
| 16 | 
            +
              "hidden_size": 4096,
         | 
| 17 | 
            +
              "initializer_range": 0.02,
         | 
| 18 | 
            +
              "intermediate_size": 14336,
         | 
| 19 | 
            +
              "max_length": 2048,
         | 
| 20 | 
            +
              "max_position_embeddings": 32768,
         | 
| 21 | 
            +
              "model_type": "internlm",
         | 
| 22 | 
            +
              "num_attention_heads": 32,
         | 
| 23 | 
            +
              "num_hidden_layers": 32,
         | 
| 24 | 
            +
              "num_key_value_heads": 8,
         | 
| 25 | 
            +
              "pad_token_id": 2,
         | 
| 26 | 
            +
              "rms_norm_eps": 1e-05,
         | 
| 27 | 
            +
              "rope_scaling": {
         | 
| 28 | 
            +
                "factor": 1.0,
         | 
| 29 | 
            +
                "type": "dynamic"
         | 
| 30 | 
            +
              },
         | 
| 31 | 
            +
              "rope_theta": 1000000,
         | 
| 32 | 
            +
              "tie_word_embeddings": false,
         | 
| 33 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 34 | 
            +
              "transformers_version": "4.28.0",
         | 
| 35 | 
            +
              "use_cache": false,
         | 
| 36 | 
            +
              "vocab_size": 93194
         | 
| 37 | 
            +
            }
         | 
    	
        configuration_internlm.py
    ADDED
    
    | @@ -0,0 +1,164 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) InternLM. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """ InternLM model configuration"""
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 23 | 
            +
            from transformers.utils import logging
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            class InternLMConfig(PretrainedConfig):
         | 
| 31 | 
            +
                r"""
         | 
| 32 | 
            +
                This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
         | 
| 33 | 
            +
                an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
         | 
| 34 | 
            +
                configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 37 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
                Args:
         | 
| 41 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         | 
| 42 | 
            +
                        Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
         | 
| 43 | 
            +
                        `inputs_ids` passed when calling [`InternLMModel`]
         | 
| 44 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 45 | 
            +
                        Dimension of the hidden representations.
         | 
| 46 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         | 
| 47 | 
            +
                        Dimension of the MLP representations.
         | 
| 48 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 49 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 50 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 51 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 52 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 53 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 54 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 55 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 56 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 57 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 58 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 59 | 
            +
                        `num_attention_heads`.
         | 
| 60 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 61 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 62 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 63 | 
            +
                        The maximum sequence length that this model might ever be used with. Typically set this to something large
         | 
| 64 | 
            +
                        just in case (e.g., 512 or 1024 or 2048).
         | 
| 65 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 66 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 67 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-12):
         | 
| 68 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 69 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 70 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 71 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 72 | 
            +
                    tie_word_embeddings(`bool`, *optional*, defaults to `False`):
         | 
| 73 | 
            +
                        Whether to tie weight embeddings
         | 
| 74 | 
            +
                    Example:
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                ```python
         | 
| 77 | 
            +
                >>> from transformers import InternLMModel, InternLMConfig
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                >>> # Initializing a InternLM internlm-7b style configuration
         | 
| 80 | 
            +
                >>> configuration = InternLMConfig()
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                >>> # Initializing a model from the internlm-7b style configuration
         | 
| 83 | 
            +
                >>> model = InternLMModel(configuration)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                >>> # Accessing the model configuration
         | 
| 86 | 
            +
                >>> configuration = model.config
         | 
| 87 | 
            +
                ```"""
         | 
| 88 | 
            +
                model_type = "internlm"
         | 
| 89 | 
            +
                _auto_class = "AutoConfig"
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def __init__(  # pylint: disable=W0102
         | 
| 92 | 
            +
                    self,
         | 
| 93 | 
            +
                    vocab_size=103168,
         | 
| 94 | 
            +
                    hidden_size=4096,
         | 
| 95 | 
            +
                    intermediate_size=11008,
         | 
| 96 | 
            +
                    num_hidden_layers=32,
         | 
| 97 | 
            +
                    num_attention_heads=32,
         | 
| 98 | 
            +
                    num_key_value_heads=None,
         | 
| 99 | 
            +
                    hidden_act="silu",
         | 
| 100 | 
            +
                    max_position_embeddings=2048,
         | 
| 101 | 
            +
                    initializer_range=0.02,
         | 
| 102 | 
            +
                    rms_norm_eps=1e-6,
         | 
| 103 | 
            +
                    use_cache=True,
         | 
| 104 | 
            +
                    pad_token_id=0,
         | 
| 105 | 
            +
                    bos_token_id=1,
         | 
| 106 | 
            +
                    eos_token_id=2,
         | 
| 107 | 
            +
                    tie_word_embeddings=False,
         | 
| 108 | 
            +
                    bias=True,
         | 
| 109 | 
            +
                    rope_theta=10000,
         | 
| 110 | 
            +
                    rope_scaling=None,
         | 
| 111 | 
            +
                    attn_implementation="eager",
         | 
| 112 | 
            +
                    **kwargs,
         | 
| 113 | 
            +
                ):
         | 
| 114 | 
            +
                    self.vocab_size = vocab_size
         | 
| 115 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 116 | 
            +
                    self.hidden_size = hidden_size
         | 
| 117 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 118 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 119 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 120 | 
            +
                    self.bias = bias
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    if num_key_value_heads is None:
         | 
| 123 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 124 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    self.hidden_act = hidden_act
         | 
| 127 | 
            +
                    self.initializer_range = initializer_range
         | 
| 128 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 129 | 
            +
                    self.use_cache = use_cache
         | 
| 130 | 
            +
                    self.rope_theta = rope_theta
         | 
| 131 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 132 | 
            +
                    self._rope_scaling_validation()
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    self.attn_implementation = attn_implementation
         | 
| 135 | 
            +
                    if self.attn_implementation is None:
         | 
| 136 | 
            +
                        self.attn_implementation = "eager"
         | 
| 137 | 
            +
                    super().__init__(
         | 
| 138 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 139 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 140 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 141 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 142 | 
            +
                        **kwargs,
         | 
| 143 | 
            +
                    )
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                def _rope_scaling_validation(self):
         | 
| 146 | 
            +
                    """
         | 
| 147 | 
            +
                    Validate the `rope_scaling` configuration.
         | 
| 148 | 
            +
                    """
         | 
| 149 | 
            +
                    if self.rope_scaling is None:
         | 
| 150 | 
            +
                        return
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
         | 
| 153 | 
            +
                        raise ValueError(
         | 
| 154 | 
            +
                            "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
         | 
| 155 | 
            +
                            f"got {self.rope_scaling}"
         | 
| 156 | 
            +
                        )
         | 
| 157 | 
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         | 
| 158 | 
            +
                    rope_scaling_factor = self.rope_scaling.get("factor", None)
         | 
| 159 | 
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
         | 
| 160 | 
            +
                        raise ValueError(
         | 
| 161 | 
            +
                            f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
         | 
| 162 | 
            +
                        )
         | 
| 163 | 
            +
                    if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
         | 
| 164 | 
            +
                        raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "bos_token_id": 1,
         | 
| 4 | 
            +
              "eos_token_id": 2,
         | 
| 5 | 
            +
              "pad_token_id": 2,
         | 
| 6 | 
            +
              "transformers_version": "4.28.0"
         | 
| 7 | 
            +
            }
         | 
    	
        modeling_internlm2.py
    ADDED
    
    | @@ -0,0 +1,1270 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # # Copyright (c) InternLM. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """ PyTorch InternLM2 model."""
         | 
| 21 | 
            +
            import math
         | 
| 22 | 
            +
            import queue
         | 
| 23 | 
            +
            import threading
         | 
| 24 | 
            +
            import warnings
         | 
| 25 | 
            +
            import copy
         | 
| 26 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 27 | 
            +
            from torchvision import transforms
         | 
| 28 | 
            +
            from torchvision.transforms.functional import InterpolationMode
         | 
| 29 | 
            +
            from PIL import Image
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            import torch
         | 
| 32 | 
            +
            import torch.utils.checkpoint
         | 
| 33 | 
            +
            from einops import rearrange
         | 
| 34 | 
            +
            from torch import nn
         | 
| 35 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 36 | 
            +
            from transformers.activations import ACT2FN
         | 
| 37 | 
            +
            from transformers.modeling_outputs import (
         | 
| 38 | 
            +
                BaseModelOutputWithPast,
         | 
| 39 | 
            +
                CausalLMOutputWithPast,
         | 
| 40 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 41 | 
            +
            )
         | 
| 42 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 43 | 
            +
            from transformers.utils import (
         | 
| 44 | 
            +
                add_start_docstrings,
         | 
| 45 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 46 | 
            +
                logging,
         | 
| 47 | 
            +
                replace_return_docstrings,
         | 
| 48 | 
            +
            )
         | 
| 49 | 
            +
            from transformers import StoppingCriteria, StoppingCriteriaList
         | 
| 50 | 
            +
            try:
         | 
| 51 | 
            +
                from transformers.generation.streamers import BaseStreamer
         | 
| 52 | 
            +
            except:  # noqa # pylint: disable=bare-except
         | 
| 53 | 
            +
                BaseStreamer = None
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            from .configuration_internlm import InternLMConfig as InternLM2Config
         | 
| 56 | 
            +
            from .build_mlp import build_vision_tower, build_vision_projector, PLoRA
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            _CONFIG_FOR_DOC = "InternLM2Config"
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            class StoppingCriteriaSub(StoppingCriteria):
         | 
| 64 | 
            +
                def __init__(self, stops=[], encounters=1):
         | 
| 65 | 
            +
                    super().__init__()
         | 
| 66 | 
            +
                    self.stops = stops
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
         | 
| 69 | 
            +
                    for stop in self.stops:
         | 
| 70 | 
            +
                        if torch.all((stop == input_ids[0][-len(stop):])).item():
         | 
| 71 | 
            +
                            return True
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                    return False
         | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
             | 
| 78 | 
            +
            # Copied from transformers.models.bart.modeling_bart._make_causal_mask
         | 
| 79 | 
            +
            def _make_causal_mask(
         | 
| 80 | 
            +
                input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
         | 
| 81 | 
            +
            ):
         | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
                Make causal mask used for bi-directional self-attention.
         | 
| 84 | 
            +
                """
         | 
| 85 | 
            +
                bsz, tgt_len = input_ids_shape
         | 
| 86 | 
            +
                mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
         | 
| 87 | 
            +
                mask_cond = torch.arange(mask.size(-1), device=device)
         | 
| 88 | 
            +
                mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
         | 
| 89 | 
            +
                mask = mask.to(dtype)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                if past_key_values_length > 0:
         | 
| 92 | 
            +
                    mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
         | 
| 93 | 
            +
                return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            # Copied from transformers.models.bart.modeling_bart._expand_mask
         | 
| 97 | 
            +
            def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 98 | 
            +
                """
         | 
| 99 | 
            +
                Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
         | 
| 100 | 
            +
                """
         | 
| 101 | 
            +
                bsz, src_len = mask.size()
         | 
| 102 | 
            +
                tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                inverted_mask = 1.0 - expanded_mask
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            class InternLM2RMSNorm(nn.Module):
         | 
| 112 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 113 | 
            +
                    """
         | 
| 114 | 
            +
                    InternLM2RMSNorm is equivalent to T5LayerNorm
         | 
| 115 | 
            +
                    """
         | 
| 116 | 
            +
                    super().__init__()
         | 
| 117 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 118 | 
            +
                    self.variance_epsilon = eps
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def forward(self, hidden_states):
         | 
| 121 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 122 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 123 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 124 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 125 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
             | 
| 128 | 
            +
            class InternLM2RotaryEmbedding(nn.Module):
         | 
| 129 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 130 | 
            +
                    super().__init__()
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    self.dim = dim
         | 
| 133 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 134 | 
            +
                    self.base = base
         | 
| 135 | 
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         | 
| 136 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    # Build here to make `torch.jit.trace` work.
         | 
| 139 | 
            +
                    self._set_cos_sin_cache(
         | 
| 140 | 
            +
                        seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
         | 
| 141 | 
            +
                    )
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 144 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 145 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 148 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 149 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 150 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 151 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 154 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 155 | 
            +
                    if seq_len > self.max_seq_len_cached:
         | 
| 156 | 
            +
                        self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    return (
         | 
| 159 | 
            +
                        self.cos_cached[:seq_len].to(dtype=x.dtype),
         | 
| 160 | 
            +
                        self.sin_cached[:seq_len].to(dtype=x.dtype),
         | 
| 161 | 
            +
                    )
         | 
| 162 | 
            +
             | 
| 163 | 
            +
             | 
| 164 | 
            +
            class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
         | 
| 165 | 
            +
                """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         | 
| 168 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 169 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 172 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 173 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 174 | 
            +
                    t = t / self.scaling_factor
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 177 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 178 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 179 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 180 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 181 | 
            +
             | 
| 182 | 
            +
             | 
| 183 | 
            +
            class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
         | 
| 184 | 
            +
                """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
         | 
| 185 | 
            +
                Credits to the Reddit users /u/bloc97 and /u/emozilla.
         | 
| 186 | 
            +
                """
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         | 
| 189 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 190 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 193 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    if seq_len > self.max_position_embeddings:
         | 
| 196 | 
            +
                        base = self.base * (
         | 
| 197 | 
            +
                            (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
         | 
| 198 | 
            +
                        ) ** (self.dim / (self.dim - 2))
         | 
| 199 | 
            +
                        inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         | 
| 200 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 205 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 206 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 207 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 208 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 209 | 
            +
             | 
| 210 | 
            +
             | 
| 211 | 
            +
            def rotate_half(x):
         | 
| 212 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 213 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 214 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 215 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 216 | 
            +
             | 
| 217 | 
            +
             | 
| 218 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
         | 
| 219 | 
            +
                # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
         | 
| 220 | 
            +
                cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
         | 
| 221 | 
            +
                sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
         | 
| 222 | 
            +
                cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
         | 
| 223 | 
            +
                sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
         | 
| 224 | 
            +
                if q.size(2) == 1:
         | 
| 225 | 
            +
                    q_embed = (q * cos[:, :, -1:, :]) + (rotate_half(q) * sin[:, :, -1:, :])
         | 
| 226 | 
            +
                else:
         | 
| 227 | 
            +
                    q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                if k.size(2) == 1:
         | 
| 230 | 
            +
                    k_embed = (k * cos[:, :, -1:, :]) + (rotate_half(k) * sin[:, :, -1:, :])
         | 
| 231 | 
            +
                else:
         | 
| 232 | 
            +
                    k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                return q_embed, k_embed
         | 
| 235 | 
            +
             | 
| 236 | 
            +
             | 
| 237 | 
            +
            class InternLM2MLP(nn.Module):
         | 
| 238 | 
            +
                def __init__(self, config):
         | 
| 239 | 
            +
                    super().__init__()
         | 
| 240 | 
            +
                    self.config = config
         | 
| 241 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 242 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 243 | 
            +
                    #self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 244 | 
            +
                    #self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 245 | 
            +
                    #self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 246 | 
            +
                    
         | 
| 247 | 
            +
                    self.w1 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
         | 
| 248 | 
            +
                                        lora_r=256, lora_alpha=256, lora_len=256)
         | 
| 249 | 
            +
                    self.w3 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
         | 
| 250 | 
            +
                                        lora_r=256, lora_alpha=256, lora_len=256)
         | 
| 251 | 
            +
                    self.w2 = PLoRA(self.intermediate_size, self.hidden_size, bias=False,
         | 
| 252 | 
            +
                                        lora_r=256, lora_alpha=256, lora_len=256)
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                def forward(self, x, im_mask):
         | 
| 257 | 
            +
                    down_proj = self.w2(self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    return down_proj
         | 
| 260 | 
            +
             | 
| 261 | 
            +
             | 
| 262 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 263 | 
            +
                """
         | 
| 264 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 265 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 266 | 
            +
                """
         | 
| 267 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 268 | 
            +
                if n_rep == 1:
         | 
| 269 | 
            +
                    return hidden_states
         | 
| 270 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 271 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
             | 
| 274 | 
            +
            class InternLM2Attention(nn.Module):
         | 
| 275 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 278 | 
            +
                    super().__init__()
         | 
| 279 | 
            +
                    self.config = config
         | 
| 280 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 281 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 282 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 283 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 284 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 285 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 286 | 
            +
                    self.is_causal = True
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 289 | 
            +
                        raise ValueError(
         | 
| 290 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 291 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 292 | 
            +
                        )
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    #self.wqkv = nn.Linear(
         | 
| 295 | 
            +
                    self.wqkv = PLoRA(
         | 
| 296 | 
            +
                        self.hidden_size,
         | 
| 297 | 
            +
                        (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
         | 
| 298 | 
            +
                        bias=config.bias,
         | 
| 299 | 
            +
                        lora_r=256, lora_alpha=256, lora_len=256
         | 
| 300 | 
            +
                    )
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                    #self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
         | 
| 303 | 
            +
                    self.wo = PLoRA(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias,
         | 
| 304 | 
            +
                                       lora_r=256, lora_alpha=256, lora_len=256)
         | 
| 305 | 
            +
                    self._init_rope()
         | 
| 306 | 
            +
                
         | 
| 307 | 
            +
                def _init_rope(self):
         | 
| 308 | 
            +
                    if self.config.rope_scaling is None:
         | 
| 309 | 
            +
                        self.rotary_emb = InternLM2RotaryEmbedding(
         | 
| 310 | 
            +
                            self.head_dim,
         | 
| 311 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 312 | 
            +
                            base=self.config.rope_theta,
         | 
| 313 | 
            +
                        )
         | 
| 314 | 
            +
                    else:
         | 
| 315 | 
            +
                        scaling_type = self.config.rope_scaling["type"]
         | 
| 316 | 
            +
                        scaling_factor = self.config.rope_scaling["factor"]
         | 
| 317 | 
            +
                        if scaling_type == "dynamic":
         | 
| 318 | 
            +
                            self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
         | 
| 319 | 
            +
                                self.head_dim,
         | 
| 320 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 321 | 
            +
                                base=self.config.rope_theta,
         | 
| 322 | 
            +
                                scaling_factor=scaling_factor
         | 
| 323 | 
            +
                            )
         | 
| 324 | 
            +
                        else:
         | 
| 325 | 
            +
                            raise ValueError("Currently we only support rotary embedding's type being 'dynamic'.")
         | 
| 326 | 
            +
                    return self.rotary_emb
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 329 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                def forward(
         | 
| 332 | 
            +
                    self,
         | 
| 333 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 334 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 335 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 336 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 337 | 
            +
                    output_attentions: bool = False,
         | 
| 338 | 
            +
                    use_cache: bool = False,
         | 
| 339 | 
            +
                    im_mask: Optional[Tuple[torch.Tensor]] = None,
         | 
| 340 | 
            +
                    **kwargs,
         | 
| 341 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 342 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 343 | 
            +
                        warnings.warn(
         | 
| 344 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 345 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 346 | 
            +
                        )
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    qkv_states = self.wqkv(hidden_states, im_mask)
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    qkv_states = rearrange(
         | 
| 353 | 
            +
                        qkv_states,
         | 
| 354 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 355 | 
            +
                        gs=2 + self.num_key_value_groups,
         | 
| 356 | 
            +
                        d=self.head_dim,
         | 
| 357 | 
            +
                    )
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 360 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
         | 
| 361 | 
            +
                    key_states = qkv_states[..., -2, :]
         | 
| 362 | 
            +
                    value_states = qkv_states[..., -1, :]
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 365 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 366 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 369 | 
            +
                    if past_key_value is not None:
         | 
| 370 | 
            +
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 371 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 372 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                    if past_key_value is not None:
         | 
| 375 | 
            +
                        # reuse k, v, self_attention
         | 
| 376 | 
            +
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 377 | 
            +
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 382 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 387 | 
            +
                        raise ValueError(
         | 
| 388 | 
            +
                            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 389 | 
            +
                            f" {attn_weights.size()}"
         | 
| 390 | 
            +
                        )
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    if attention_mask is not None:
         | 
| 393 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 394 | 
            +
                            raise ValueError(
         | 
| 395 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 396 | 
            +
                            )
         | 
| 397 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    # upcast attention to fp32
         | 
| 400 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 401 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 404 | 
            +
                        raise ValueError(
         | 
| 405 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 406 | 
            +
                            f" {attn_output.size()}"
         | 
| 407 | 
            +
                        )
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 410 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                    attn_output = self.wo(attn_output, im_mask)
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    if not output_attentions:
         | 
| 415 | 
            +
                        attn_weights = None
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 418 | 
            +
             | 
| 419 | 
            +
             | 
| 420 | 
            +
            class InternLM2FlashAttention2(InternLM2Attention):
         | 
| 421 | 
            +
                """
         | 
| 422 | 
            +
                InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
         | 
| 423 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 424 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 425 | 
            +
                """
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                def forward(
         | 
| 428 | 
            +
                    self,
         | 
| 429 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 430 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 431 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 432 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 433 | 
            +
                    output_attentions: bool = False,
         | 
| 434 | 
            +
                    use_cache: bool = False,
         | 
| 435 | 
            +
                    im_mask: Optional[Tuple[torch.Tensor]] = None,
         | 
| 436 | 
            +
                    **kwargs,
         | 
| 437 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 438 | 
            +
                    # InternLM2FlashAttention2 attention does not support output_attentions
         | 
| 439 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 440 | 
            +
                        warnings.warn(
         | 
| 441 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 442 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 443 | 
            +
                        )
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                        # overwrite attention_mask with padding_mask
         | 
| 446 | 
            +
                        attention_mask = kwargs.pop("padding_mask")
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    output_attentions = False
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                    qkv_states = self.wqkv(hidden_states, im_mask)
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    qkv_states = rearrange(
         | 
| 455 | 
            +
                        qkv_states,
         | 
| 456 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 457 | 
            +
                        gs=self.num_heads + 2 * self.num_key_value_heads,
         | 
| 458 | 
            +
                        d=self.head_dim,
         | 
| 459 | 
            +
                        q=q_len,
         | 
| 460 | 
            +
                    )
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 463 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
         | 
| 464 | 
            +
                    key_states = qkv_states[..., -2, :]
         | 
| 465 | 
            +
                    value_states = qkv_states[..., -1, :]
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 468 | 
            +
                    if past_key_value is not None:
         | 
| 469 | 
            +
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    if past_key_value is not None:
         | 
| 476 | 
            +
                        # reuse k, v, self_attention
         | 
| 477 | 
            +
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 478 | 
            +
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 483 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 484 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                    dropout_rate = 0.0 if not self.training else self.attention_dropout
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 489 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 490 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 491 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 492 | 
            +
                    # in fp32. (InternLM2RMSNorm handles it correctly)
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                    input_dtype = query_states.dtype
         | 
| 495 | 
            +
                    if input_dtype == torch.float32:
         | 
| 496 | 
            +
                        # Handle the case where the model is quantized
         | 
| 497 | 
            +
                        if hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 498 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 499 | 
            +
                        else:
         | 
| 500 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                        logger.warning_once(
         | 
| 503 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 504 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back "
         | 
| 505 | 
            +
                            f"the input in {target_dtype}."
         | 
| 506 | 
            +
                        )
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 509 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 510 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 513 | 
            +
                        query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
         | 
| 514 | 
            +
                    )
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 517 | 
            +
                    attn_output = self.wo(attn_output, im_mask)
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                    if not output_attentions:
         | 
| 520 | 
            +
                        attn_weights = None
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 523 | 
            +
             | 
| 524 | 
            +
             | 
| 525 | 
            +
            class InternLM2DecoderLayer(nn.Module):
         | 
| 526 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 527 | 
            +
                    super().__init__()
         | 
| 528 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 529 | 
            +
                    self.attention = (
         | 
| 530 | 
            +
                        InternLM2Attention(config=config)
         | 
| 531 | 
            +
                        if not getattr(config, "_flash_attn_2_enabled", False)
         | 
| 532 | 
            +
                        else InternLM2FlashAttention2(config=config)
         | 
| 533 | 
            +
                    )
         | 
| 534 | 
            +
                    self.feed_forward = InternLM2MLP(config)
         | 
| 535 | 
            +
                    self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 536 | 
            +
                    self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                def forward(
         | 
| 539 | 
            +
                    self,
         | 
| 540 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 541 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 542 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 543 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 544 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 545 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 546 | 
            +
                    im_mask: Optional[Tuple[torch.Tensor]] = None,
         | 
| 547 | 
            +
                    **kwargs,
         | 
| 548 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 549 | 
            +
                    """
         | 
| 550 | 
            +
                    Args:
         | 
| 551 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 552 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 553 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 554 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 555 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 556 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 557 | 
            +
                            returned tensors for more detail.
         | 
| 558 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 559 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 560 | 
            +
                            (see `past_key_values`).
         | 
| 561 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 562 | 
            +
                    """
         | 
| 563 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 564 | 
            +
                        warnings.warn(
         | 
| 565 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 566 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 567 | 
            +
                        )
         | 
| 568 | 
            +
             | 
| 569 | 
            +
                    residual = hidden_states
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    hidden_states = self.attention_norm(hidden_states)
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                    # Self Attention
         | 
| 574 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.attention(
         | 
| 575 | 
            +
                        hidden_states=hidden_states,
         | 
| 576 | 
            +
                        attention_mask=attention_mask,
         | 
| 577 | 
            +
                        position_ids=position_ids,
         | 
| 578 | 
            +
                        past_key_value=past_key_value,
         | 
| 579 | 
            +
                        output_attentions=output_attentions,
         | 
| 580 | 
            +
                        use_cache=use_cache,
         | 
| 581 | 
            +
                        im_mask=im_mask,
         | 
| 582 | 
            +
                        **kwargs,
         | 
| 583 | 
            +
                    )
         | 
| 584 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                    # Fully Connected
         | 
| 587 | 
            +
                    residual = hidden_states
         | 
| 588 | 
            +
                    hidden_states = self.ffn_norm(hidden_states)
         | 
| 589 | 
            +
                    hidden_states = self.feed_forward(hidden_states, im_mask)
         | 
| 590 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                    outputs = (hidden_states,)
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                    if output_attentions:
         | 
| 595 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 596 | 
            +
             | 
| 597 | 
            +
                    if use_cache:
         | 
| 598 | 
            +
                        outputs += (present_key_value,)
         | 
| 599 | 
            +
             | 
| 600 | 
            +
                    return outputs
         | 
| 601 | 
            +
             | 
| 602 | 
            +
             | 
| 603 | 
            +
            InternLM2_START_DOCSTRING = r"""
         | 
| 604 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 605 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 606 | 
            +
                etc.)
         | 
| 607 | 
            +
             | 
| 608 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 609 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 610 | 
            +
                and behavior.
         | 
| 611 | 
            +
             | 
| 612 | 
            +
                Parameters:
         | 
| 613 | 
            +
                    config ([`InternLM2Config`]):
         | 
| 614 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 615 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 616 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 617 | 
            +
            """
         | 
| 618 | 
            +
             | 
| 619 | 
            +
             | 
| 620 | 
            +
            @add_start_docstrings(
         | 
| 621 | 
            +
                "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 622 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 623 | 
            +
            )
         | 
| 624 | 
            +
            class InternLM2PreTrainedModel(PreTrainedModel):
         | 
| 625 | 
            +
                config_class = InternLM2Config
         | 
| 626 | 
            +
                base_model_prefix = "model"
         | 
| 627 | 
            +
                supports_gradient_checkpointing = True
         | 
| 628 | 
            +
                _no_split_modules = ["InternLM2DecoderLayer"]
         | 
| 629 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 630 | 
            +
                _supports_flash_attn_2 = True
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                def _init_weights(self, module):
         | 
| 633 | 
            +
                    std = self.config.initializer_range
         | 
| 634 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 635 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 636 | 
            +
                        if module.bias is not None:
         | 
| 637 | 
            +
                            module.bias.data.zero_()
         | 
| 638 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 639 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 640 | 
            +
                        if module.padding_idx is not None:
         | 
| 641 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 642 | 
            +
             | 
| 643 | 
            +
             | 
| 644 | 
            +
            InternLM2_INPUTS_DOCSTRING = r"""
         | 
| 645 | 
            +
                Args:
         | 
| 646 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 647 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 648 | 
            +
                        it.
         | 
| 649 | 
            +
             | 
| 650 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 651 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 652 | 
            +
             | 
| 653 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 654 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 655 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 656 | 
            +
             | 
| 657 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 658 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 663 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 664 | 
            +
             | 
| 665 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 666 | 
            +
                        `past_key_values`).
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 669 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 670 | 
            +
                        information on the default strategy.
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 673 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 674 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 675 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 676 | 
            +
                        config.n_positions - 1]`.
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 679 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
         | 
| 680 | 
            +
                        when `config.use_cache=True`):
         | 
| 681 | 
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 682 | 
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         | 
| 683 | 
            +
                        `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
         | 
| 684 | 
            +
             | 
| 685 | 
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 686 | 
            +
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         | 
| 687 | 
            +
             | 
| 688 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 689 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 690 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 691 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 692 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 693 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 694 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 695 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 696 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 697 | 
            +
                        `past_key_values`).
         | 
| 698 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 699 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 700 | 
            +
                        tensors for more detail.
         | 
| 701 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 702 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 703 | 
            +
                        more detail.
         | 
| 704 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 705 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 706 | 
            +
            """
         | 
| 707 | 
            +
             | 
| 708 | 
            +
             | 
| 709 | 
            +
            @add_start_docstrings(
         | 
| 710 | 
            +
                "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 711 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 712 | 
            +
            )
         | 
| 713 | 
            +
            class InternLM2Model(InternLM2PreTrainedModel):
         | 
| 714 | 
            +
                """
         | 
| 715 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
         | 
| 716 | 
            +
             | 
| 717 | 
            +
                Args:
         | 
| 718 | 
            +
                    config: InternLM2Config
         | 
| 719 | 
            +
                """
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                _auto_class = "AutoModel"
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 724 | 
            +
                    super().__init__(config)
         | 
| 725 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 726 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                    self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 729 | 
            +
                    self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
         | 
| 730 | 
            +
                    self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 731 | 
            +
             | 
| 732 | 
            +
                    self.gradient_checkpointing = False
         | 
| 733 | 
            +
                    # Initialize weights and apply final processing
         | 
| 734 | 
            +
                    self.post_init()
         | 
| 735 | 
            +
             | 
| 736 | 
            +
                def get_input_embeddings(self):
         | 
| 737 | 
            +
                    return self.tok_embeddings
         | 
| 738 | 
            +
             | 
| 739 | 
            +
                def set_input_embeddings(self, value):
         | 
| 740 | 
            +
                    self.tok_embeddings = value
         | 
| 741 | 
            +
             | 
| 742 | 
            +
                # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
         | 
| 743 | 
            +
                def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
         | 
| 744 | 
            +
                    # create causal mask
         | 
| 745 | 
            +
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 746 | 
            +
                    combined_attention_mask = None
         | 
| 747 | 
            +
                    if input_shape[-1] > 1:
         | 
| 748 | 
            +
                        combined_attention_mask = _make_causal_mask(
         | 
| 749 | 
            +
                            input_shape,
         | 
| 750 | 
            +
                            inputs_embeds.dtype,
         | 
| 751 | 
            +
                            device=inputs_embeds.device,
         | 
| 752 | 
            +
                            past_key_values_length=past_key_values_length,
         | 
| 753 | 
            +
                        )
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                    if attention_mask is not None:
         | 
| 756 | 
            +
                        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 757 | 
            +
                        expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
         | 
| 758 | 
            +
                            inputs_embeds.device
         | 
| 759 | 
            +
                        )
         | 
| 760 | 
            +
                        combined_attention_mask = (
         | 
| 761 | 
            +
                            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
         | 
| 762 | 
            +
                        )
         | 
| 763 | 
            +
             | 
| 764 | 
            +
                    return combined_attention_mask
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 767 | 
            +
                def forward(
         | 
| 768 | 
            +
                    self,
         | 
| 769 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 770 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 771 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 772 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 773 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 774 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 775 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 776 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 777 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 778 | 
            +
                    **kwargs
         | 
| 779 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 780 | 
            +
             | 
| 781 | 
            +
                    im_mask = kwargs.get('im_mask', None)
         | 
| 782 | 
            +
             | 
| 783 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 784 | 
            +
                    output_hidden_states = (
         | 
| 785 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 786 | 
            +
                    )
         | 
| 787 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 788 | 
            +
             | 
| 789 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 790 | 
            +
             | 
| 791 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 792 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 793 | 
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         | 
| 794 | 
            +
                    elif input_ids is not None:
         | 
| 795 | 
            +
                        batch_size, seq_length = input_ids.shape[:2]
         | 
| 796 | 
            +
                    elif inputs_embeds is not None:
         | 
| 797 | 
            +
                        batch_size, seq_length = inputs_embeds.shape[:2]
         | 
| 798 | 
            +
                    else:
         | 
| 799 | 
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         | 
| 800 | 
            +
             | 
| 801 | 
            +
                    seq_length_with_past = seq_length
         | 
| 802 | 
            +
                    past_key_values_length = 0
         | 
| 803 | 
            +
                    if past_key_values is not None:
         | 
| 804 | 
            +
                        past_key_values_length = past_key_values[0][0].shape[2]
         | 
| 805 | 
            +
                        seq_length_with_past = seq_length_with_past + past_key_values_length
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                    if position_ids is None:
         | 
| 808 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 809 | 
            +
                        position_ids = torch.arange(
         | 
| 810 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 811 | 
            +
                        )
         | 
| 812 | 
            +
                        position_ids = position_ids.unsqueeze(0)
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                    if inputs_embeds is None:
         | 
| 815 | 
            +
                        inputs_embeds = self.tok_embeddings(input_ids)
         | 
| 816 | 
            +
                        im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device).bool()
         | 
| 817 | 
            +
                    # embed positions
         | 
| 818 | 
            +
                    if attention_mask is None:
         | 
| 819 | 
            +
                        attention_mask = torch.ones(
         | 
| 820 | 
            +
                            (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
         | 
| 821 | 
            +
                        )
         | 
| 822 | 
            +
                    attention_mask = self._prepare_decoder_attention_mask(
         | 
| 823 | 
            +
                        attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
         | 
| 824 | 
            +
                    )
         | 
| 825 | 
            +
             | 
| 826 | 
            +
                    # embed positions
         | 
| 827 | 
            +
                    hidden_states = inputs_embeds
         | 
| 828 | 
            +
             | 
| 829 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 830 | 
            +
                        if use_cache:
         | 
| 831 | 
            +
                            logger.warning_once(
         | 
| 832 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 833 | 
            +
                            )
         | 
| 834 | 
            +
                            use_cache = False
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                    # decoder layers
         | 
| 837 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 838 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 839 | 
            +
                    next_decoder_cache = () if use_cache else None
         | 
| 840 | 
            +
             | 
| 841 | 
            +
                    for idx, decoder_layer in enumerate(self.layers):
         | 
| 842 | 
            +
                        if output_hidden_states:
         | 
| 843 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 844 | 
            +
             | 
| 845 | 
            +
                        past_key_value = past_key_values[idx] if past_key_values is not None else None
         | 
| 846 | 
            +
             | 
| 847 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 848 | 
            +
             | 
| 849 | 
            +
                            def create_custom_forward(module):
         | 
| 850 | 
            +
                                def custom_forward(*inputs):
         | 
| 851 | 
            +
                                    # None for past_key_value
         | 
| 852 | 
            +
                                    return module(*inputs, output_attentions, None, im_mask)
         | 
| 853 | 
            +
             | 
| 854 | 
            +
                                return custom_forward
         | 
| 855 | 
            +
             | 
| 856 | 
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 857 | 
            +
                                create_custom_forward(decoder_layer),
         | 
| 858 | 
            +
                                hidden_states,
         | 
| 859 | 
            +
                                attention_mask,
         | 
| 860 | 
            +
                                position_ids,
         | 
| 861 | 
            +
                                None,
         | 
| 862 | 
            +
                            )
         | 
| 863 | 
            +
                        else:
         | 
| 864 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 865 | 
            +
                                hidden_states,
         | 
| 866 | 
            +
                                attention_mask=attention_mask,
         | 
| 867 | 
            +
                                position_ids=position_ids,
         | 
| 868 | 
            +
                                past_key_value=past_key_value,
         | 
| 869 | 
            +
                                output_attentions=output_attentions,
         | 
| 870 | 
            +
                                use_cache=use_cache,
         | 
| 871 | 
            +
                                im_mask=im_mask,
         | 
| 872 | 
            +
                            )
         | 
| 873 | 
            +
             | 
| 874 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 875 | 
            +
             | 
| 876 | 
            +
                        if use_cache:
         | 
| 877 | 
            +
                            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                        if output_attentions:
         | 
| 880 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 881 | 
            +
             | 
| 882 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 885 | 
            +
                    if output_hidden_states:
         | 
| 886 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 889 | 
            +
                    if not return_dict:
         | 
| 890 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 891 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 892 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 893 | 
            +
                        past_key_values=next_cache,
         | 
| 894 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 895 | 
            +
                        attentions=all_self_attns,
         | 
| 896 | 
            +
                    )
         | 
| 897 | 
            +
             | 
| 898 | 
            +
             | 
| 899 | 
            +
            class InternLM2ForCausalLM(InternLM2PreTrainedModel):
         | 
| 900 | 
            +
                _auto_class = "AutoModelForCausalLM"
         | 
| 901 | 
            +
             | 
| 902 | 
            +
                _tied_weights_keys = ["output.weight"]
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                def __init__(self, config):
         | 
| 905 | 
            +
                    super().__init__(config)
         | 
| 906 | 
            +
                    self.model = InternLM2Model(config)
         | 
| 907 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 908 | 
            +
                    self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 909 | 
            +
                    self.debug_flag = 1
         | 
| 910 | 
            +
                    self.tokenizer = None
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                    self.max_length = config.max_length
         | 
| 913 | 
            +
                    print (f'Set max length to {self.max_length}')
         | 
| 914 | 
            +
                    self.debug_flag = 1
         | 
| 915 | 
            +
                    # Initialize weights and apply final processing
         | 
| 916 | 
            +
                    self.post_init()
         | 
| 917 | 
            +
             | 
| 918 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 919 | 
            +
                    if isinstance(module, InternLM2Model):
         | 
| 920 | 
            +
                        module.gradient_checkpointing = value
         | 
| 921 | 
            +
                    # if value:
         | 
| 922 | 
            +
                    #     self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
         | 
| 923 | 
            +
             | 
| 924 | 
            +
                def get_input_embeddings(self):
         | 
| 925 | 
            +
                    return self.model.tok_embeddings
         | 
| 926 | 
            +
             | 
| 927 | 
            +
                def set_input_embeddings(self, value):
         | 
| 928 | 
            +
                    self.model.tok_embeddings = value
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                def get_output_embeddings(self):
         | 
| 931 | 
            +
                    return self.output
         | 
| 932 | 
            +
             | 
| 933 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 934 | 
            +
                    self.output = new_embeddings
         | 
| 935 | 
            +
             | 
| 936 | 
            +
                def set_decoder(self, decoder):
         | 
| 937 | 
            +
                    self.model = decoder
         | 
| 938 | 
            +
             | 
| 939 | 
            +
                def get_decoder(self):
         | 
| 940 | 
            +
                    return self.model
         | 
| 941 | 
            +
                def encode_text(self, t, add_special_tokens=False):
         | 
| 942 | 
            +
                    t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n')
         | 
| 943 | 
            +
                    t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n')
         | 
| 944 | 
            +
                    t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]')
         | 
| 945 | 
            +
                    t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]')
         | 
| 946 | 
            +
                    t = t.replace('[UNUSED_TOKEN_0]', '[UNUSED_TOKEN_145]')
         | 
| 947 | 
            +
                    t = t.replace('[UNUSED_TOKEN_1]', '[UNUSED_TOKEN_145]')
         | 
| 948 | 
            +
             | 
| 949 | 
            +
                    text = t
         | 
| 950 | 
            +
                    token = self.tokenizer(text,
         | 
| 951 | 
            +
                                return_tensors='pt',
         | 
| 952 | 
            +
                                add_special_tokens=add_special_tokens).input_ids.to(self.device)
         | 
| 953 | 
            +
                    embs = self.model.tok_embeddings(token)
         | 
| 954 | 
            +
                    return embs
         | 
| 955 | 
            +
             | 
| 956 | 
            +
                def prompt_wrap(self, img_embeds, prompt):
         | 
| 957 | 
            +
                    batch_size = img_embeds.shape[0]
         | 
| 958 | 
            +
                    p_before, p_after = prompt.split('<ImageHere>')
         | 
| 959 | 
            +
                    p_before_tokens = self.tokenizer(
         | 
| 960 | 
            +
                        p_before, return_tensors="pt", add_special_tokens=True).to(img_embeds.device)
         | 
| 961 | 
            +
                        
         | 
| 962 | 
            +
                    p_before_embeds = self.model.tok_embeddings(p_before_tokens.input_ids).expand(batch_size, -1, -1)
         | 
| 963 | 
            +
                    wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
         | 
| 964 | 
            +
             | 
| 965 | 
            +
                    wrapped_atts_img = torch.ones(wrapped_img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
         | 
| 966 | 
            +
                    
         | 
| 967 | 
            +
                    wrapped_target = torch.ones(batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(img_embeds.device) * -100
         | 
| 968 | 
            +
                    
         | 
| 969 | 
            +
             | 
| 970 | 
            +
                    return wrapped_img_embeds, wrapped_atts_img, wrapped_target
         | 
| 971 | 
            +
             | 
| 972 | 
            +
                def text2emb(self, text, add_special=False):
         | 
| 973 | 
            +
                    # import pdb; pdb.set_trace()
         | 
| 974 | 
            +
                    new_text = []
         | 
| 975 | 
            +
                    for t in text:
         | 
| 976 | 
            +
                        t = t.replace('<|User|>:', '[UNUSED_TOKEN_146]user\n')
         | 
| 977 | 
            +
                        t = t.replace('<|Bot|>:', '[UNUSED_TOKEN_146]assistant\n')
         | 
| 978 | 
            +
                        t = t.replace('<TOKENS_UNUSED_0>', '[UNUSED_TOKEN_145]')
         | 
| 979 | 
            +
                        t = t.replace('<TOKENS_UNUSED_1>', '[UNUSED_TOKEN_145]')
         | 
| 980 | 
            +
                        new_text.append(t)
         | 
| 981 | 
            +
                    text = new_text
         | 
| 982 | 
            +
                    to_regress_tokens = self.tokenizer(
         | 
| 983 | 
            +
                        text,
         | 
| 984 | 
            +
                        return_tensors="pt",
         | 
| 985 | 
            +
                        padding="longest",
         | 
| 986 | 
            +
                        truncation=True,
         | 
| 987 | 
            +
                        max_length=self.max_length,
         | 
| 988 | 
            +
                        add_special_tokens=add_special
         | 
| 989 | 
            +
                    ).to(self.device)
         | 
| 990 | 
            +
             | 
| 991 | 
            +
                    # targets = self.mask_human_targets(to_regress_tokens.input_ids)
         | 
| 992 | 
            +
                    # targets = targets.to(self.device)
         | 
| 993 | 
            +
                    targets = to_regress_tokens.input_ids.masked_fill(
         | 
| 994 | 
            +
                        to_regress_tokens.input_ids == self.tokenizer.pad_token_id, -100
         | 
| 995 | 
            +
                    ).to(self.device)
         | 
| 996 | 
            +
                    
         | 
| 997 | 
            +
             | 
| 998 | 
            +
                    return to_regress_tokens, targets
         | 
| 999 | 
            +
             | 
| 1000 | 
            +
                def mask_human_targets(self, input_ids, pure=False):
         | 
| 1001 | 
            +
                    target_batch = []
         | 
| 1002 | 
            +
                    for bs in range(input_ids.shape[0]):
         | 
| 1003 | 
            +
                        cur_idx = 0
         | 
| 1004 | 
            +
                        ids = input_ids[bs]
         | 
| 1005 | 
            +
                        targets = copy.deepcopy(ids)
         | 
| 1006 | 
            +
                        end_count = 0
         | 
| 1007 | 
            +
                        last_eoa = 0
         | 
| 1008 | 
            +
                        for i, temp_id in enumerate(ids):
         | 
| 1009 | 
            +
                            if temp_id == 92542:
         | 
| 1010 | 
            +
                                if end_count % 2 == 0:
         | 
| 1011 | 
            +
                                    targets[last_eoa: i+6] = -100
         | 
| 1012 | 
            +
                                else:
         | 
| 1013 | 
            +
                                    last_eoa = i + 1
         | 
| 1014 | 
            +
                                end_count += 1
         | 
| 1015 | 
            +
                            elif temp_id == 2: ### eos and following pad
         | 
| 1016 | 
            +
                                targets[i+1:] = -100 #### loss on eos, but not on pad 
         | 
| 1017 | 
            +
                                break
         | 
| 1018 | 
            +
                        if temp_id != 2 and end_count % 2 == 0: ### trunction, end at last question
         | 
| 1019 | 
            +
                            targets[last_eoa+1:] = -100 #### mask all after the last answer
         | 
| 1020 | 
            +
             | 
| 1021 | 
            +
                        target_batch.append(targets.unsqueeze(0))
         | 
| 1022 | 
            +
                        if self.debug_flag and 0:
         | 
| 1023 | 
            +
                            print ('#### Warining! System meta is not support now')
         | 
| 1024 | 
            +
                            targets_vis = targets.clone()
         | 
| 1025 | 
            +
                            targets_vis[targets_vis==-100] = 92399
         | 
| 1026 | 
            +
                            targets_vis_tokens = ''.join(self.tokenizer.convert_ids_to_tokens(targets_vis)).replace('[UNUSED_TOKEN_2]', "  ")
         | 
| 1027 | 
            +
                            print(''.join(self.tokenizer.convert_ids_to_tokens(ids)))
         | 
| 1028 | 
            +
                            print('-----------')
         | 
| 1029 | 
            +
                            print([targets_vis_tokens])
         | 
| 1030 | 
            +
                            print('-----------------------------')
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                    target_batch = torch.cat(target_batch, dim=0)
         | 
| 1033 | 
            +
                    return target_batch
         | 
| 1034 | 
            +
             | 
| 1035 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 1036 | 
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1037 | 
            +
                def forward(
         | 
| 1038 | 
            +
                    self,
         | 
| 1039 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1040 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1041 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1042 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1043 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1044 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1045 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1046 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1047 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1048 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1049 | 
            +
                    **kwargs
         | 
| 1050 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 1051 | 
            +
                    r"""
         | 
| 1052 | 
            +
                    Args:
         | 
| 1053 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1054 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1055 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1056 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1057 | 
            +
             | 
| 1058 | 
            +
                    Returns:
         | 
| 1059 | 
            +
             | 
| 1060 | 
            +
                    Example:
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                    ```python
         | 
| 1063 | 
            +
                    >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
                    >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         | 
| 1066 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         | 
| 1067 | 
            +
             | 
| 1068 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 1069 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1070 | 
            +
             | 
| 1071 | 
            +
                    >>> # Generate
         | 
| 1072 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1073 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1074 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 1075 | 
            +
                    ```"""
         | 
| 1076 | 
            +
                    samples = kwargs.get('samples', None)
         | 
| 1077 | 
            +
                    if samples:
         | 
| 1078 | 
            +
                        if self.debug_flag:
         | 
| 1079 | 
            +
                            self.debug_flag += 1
         | 
| 1080 | 
            +
                        if self.debug_flag > 5:
         | 
| 1081 | 
            +
                            self.debug_flag = 0
         | 
| 1082 | 
            +
             | 
| 1083 | 
            +
                        has_img = 'image' in samples.keys()
         | 
| 1084 | 
            +
                        # import pdb; pdb.set_trace()
         | 
| 1085 | 
            +
                        ### encode text
         | 
| 1086 | 
            +
                        # sp_token = samples["sp_token"]
         | 
| 1087 | 
            +
                        
         | 
| 1088 | 
            +
                        text = samples['text_input']
         | 
| 1089 | 
            +
                        text = ['<|User|>:' + t for t in text]
         | 
| 1090 | 
            +
                        to_regress_tokens, targets = self.text2emb(text, add_special = True)
         | 
| 1091 | 
            +
             | 
| 1092 | 
            +
                        to_regress_embeds = self.model.tok_embeddings(to_regress_tokens.input_ids)
         | 
| 1093 | 
            +
                        attention_mask = to_regress_tokens.attention_mask
         | 
| 1094 | 
            +
             | 
| 1095 | 
            +
                        if has_img:
         | 
| 1096 | 
            +
                            ### encode image
         | 
| 1097 | 
            +
                            image = samples["image"][0]
         | 
| 1098 | 
            +
                            bs = to_regress_embeds.shape[0]
         | 
| 1099 | 
            +
                            assert image.shape[0] == bs
         | 
| 1100 | 
            +
                            ### combine text and image
         | 
| 1101 | 
            +
                            if samples['data_type'][0] != 'nlp':
         | 
| 1102 | 
            +
                                img_embeds, atts_img, img_target = self.img2emb(image)
         | 
| 1103 | 
            +
                                to_regress_embeds = torch.cat([to_regress_embeds[:,:1], img_embeds, to_regress_embeds[:,1:]], dim=1)
         | 
| 1104 | 
            +
                                attention_mask = torch.cat([attention_mask[:,:1], atts_img, attention_mask[:,1:]], dim=1)
         | 
| 1105 | 
            +
                                targets = torch.cat([targets[:,:1], img_target, targets[:,1:]], dim=1)
         | 
| 1106 | 
            +
                                
         | 
| 1107 | 
            +
                                im_len = img_embeds.shape[1]
         | 
| 1108 | 
            +
                                im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
         | 
| 1109 | 
            +
                                im_mask[:,1:1+im_len] = 1
         | 
| 1110 | 
            +
                                temp_max_length = self.max_length
         | 
| 1111 | 
            +
             | 
| 1112 | 
            +
                            else:
         | 
| 1113 | 
            +
                                img_embeds, atts_img, img_target = self.img2emb(torch.zeros(1,3,self.im_size,self.im_size).to(image.device).to(image.dtype))
         | 
| 1114 | 
            +
                                to_regress_embeds += img_embeds.sum() * 0
         | 
| 1115 | 
            +
                                im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
         | 
| 1116 | 
            +
                                temp_max_length = 2048
         | 
| 1117 | 
            +
             | 
| 1118 | 
            +
                        temp_max_length = 2048
         | 
| 1119 | 
            +
                        inputs_embeds = to_regress_embeds[:, :temp_max_length]
         | 
| 1120 | 
            +
                        attention_mask = attention_mask[:, :temp_max_length]
         | 
| 1121 | 
            +
                        targets = targets[:, :temp_max_length]
         | 
| 1122 | 
            +
                        # im_mask = im_mask[:, :temp_max_length].bool()
         | 
| 1123 | 
            +
                        labels = targets
         | 
| 1124 | 
            +
                        if self.debug_flag:
         | 
| 1125 | 
            +
                            print (targets.shape, inputs_embeds.shape, attention_mask.shape)
         | 
| 1126 | 
            +
                            le = len(samples['text_input'])
         | 
| 1127 | 
            +
                            data_type = samples['data_type'][0]
         | 
| 1128 | 
            +
                            print (f'DataType: {data_type}. Has Image: {has_img}. Current max length: {self.max_length}, BatchSize is {le}')
         | 
| 1129 | 
            +
                            if has_img:
         | 
| 1130 | 
            +
                                print (img_embeds.shape)
         | 
| 1131 | 
            +
             | 
| 1132 | 
            +
                    else:
         | 
| 1133 | 
            +
                        self.debug_flag = 0
         | 
| 1134 | 
            +
                        im_mask = kwargs.get('im_mask', None)
         | 
| 1135 | 
            +
                        if im_mask is None and inputs_embeds is not None:
         | 
| 1136 | 
            +
                            im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device)
         | 
| 1137 | 
            +
                            im_mask[:,1:1+256] = 1
         | 
| 1138 | 
            +
                            im_mask = im_mask.bool()
         | 
| 1139 | 
            +
             | 
| 1140 | 
            +
             | 
| 1141 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1142 | 
            +
                    output_hidden_states = (
         | 
| 1143 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1144 | 
            +
                    )
         | 
| 1145 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1146 | 
            +
             | 
| 1147 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1148 | 
            +
                    outputs = self.model(
         | 
| 1149 | 
            +
                        input_ids=input_ids,
         | 
| 1150 | 
            +
                        attention_mask=attention_mask,
         | 
| 1151 | 
            +
                        position_ids=position_ids,
         | 
| 1152 | 
            +
                        past_key_values=past_key_values,
         | 
| 1153 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1154 | 
            +
                        use_cache=use_cache,
         | 
| 1155 | 
            +
                        output_attentions=output_attentions,
         | 
| 1156 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1157 | 
            +
                        return_dict=return_dict,
         | 
| 1158 | 
            +
                    )
         | 
| 1159 | 
            +
             | 
| 1160 | 
            +
                    hidden_states = outputs[0]
         | 
| 1161 | 
            +
                    logits = self.output(hidden_states)
         | 
| 1162 | 
            +
                    logits = logits.float()
         | 
| 1163 | 
            +
             | 
| 1164 | 
            +
                    loss = None
         | 
| 1165 | 
            +
                    if labels is not None:
         | 
| 1166 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1167 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1168 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1169 | 
            +
                        # Flatten the tokens
         | 
| 1170 | 
            +
                        loss_fct = CrossEntropyLoss(reduce=False)
         | 
| 1171 | 
            +
                        B, N = shift_logits.shape[:2]
         | 
| 1172 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1173 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1174 | 
            +
                        mask = shift_labels >= 0
         | 
| 1175 | 
            +
                        # Enable model parallelism
         | 
| 1176 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1177 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1178 | 
            +
                        loss = (loss.view(B,N).sum(dim=1) / mask.view(B,N).sum(dim=1)).mean()
         | 
| 1179 | 
            +
             | 
| 1180 | 
            +
                    if not return_dict:
         | 
| 1181 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1182 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1183 | 
            +
             | 
| 1184 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1185 | 
            +
                        loss=loss,
         | 
| 1186 | 
            +
                        logits=logits,
         | 
| 1187 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1188 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1189 | 
            +
                        attentions=outputs.attentions,
         | 
| 1190 | 
            +
                    )
         | 
| 1191 | 
            +
             | 
| 1192 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1193 | 
            +
                    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, im_mask=None, **kwargs
         | 
| 1194 | 
            +
                ):
         | 
| 1195 | 
            +
                    if past_key_values is not None:
         | 
| 1196 | 
            +
                        past_length = past_key_values[0][0].shape[2]
         | 
| 1197 | 
            +
             | 
| 1198 | 
            +
                        # Some generation methods already pass only the last input ID
         | 
| 1199 | 
            +
                        if input_ids.shape[1] > past_length:
         | 
| 1200 | 
            +
                            remove_prefix_length = past_length
         | 
| 1201 | 
            +
                        else:
         | 
| 1202 | 
            +
                            # Default to old behavior: keep only final ID
         | 
| 1203 | 
            +
                            remove_prefix_length = input_ids.shape[1] - 1
         | 
| 1204 | 
            +
             | 
| 1205 | 
            +
                        input_ids = input_ids[:, remove_prefix_length:]
         | 
| 1206 | 
            +
             | 
| 1207 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 1208 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1209 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1210 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1211 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1212 | 
            +
                        if past_key_values:
         | 
| 1213 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1214 | 
            +
             | 
| 1215 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1216 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1217 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1218 | 
            +
                    else:
         | 
| 1219 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 1220 | 
            +
             | 
| 1221 | 
            +
                    im_mask = im_mask
         | 
| 1222 | 
            +
             | 
| 1223 | 
            +
                    model_inputs.update(
         | 
| 1224 | 
            +
                        {
         | 
| 1225 | 
            +
                            "position_ids": position_ids,
         | 
| 1226 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1227 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 1228 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1229 | 
            +
                            "im_mask": im_mask,
         | 
| 1230 | 
            +
                        }
         | 
| 1231 | 
            +
                    )
         | 
| 1232 | 
            +
                    return model_inputs
         | 
| 1233 | 
            +
             | 
| 1234 | 
            +
                @staticmethod
         | 
| 1235 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1236 | 
            +
                    reordered_past = ()
         | 
| 1237 | 
            +
                    for layer_past in past_key_values:
         | 
| 1238 | 
            +
                        reordered_past += (
         | 
| 1239 | 
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         | 
| 1240 | 
            +
                        )
         | 
| 1241 | 
            +
                    return reordered_past
         | 
| 1242 | 
            +
             | 
| 1243 | 
            +
                def inference_pretrain(self, question, tokenizer):
         | 
| 1244 | 
            +
                    print(question)
         | 
| 1245 | 
            +
                    question = f'[UNUSED_TOKEN_146]user\n{question}'
         | 
| 1246 | 
            +
                    stop_words_ids = [ 
         | 
| 1247 | 
            +
                                    torch.tensor([2]).cuda(), #'</s>'
         | 
| 1248 | 
            +
                                    torch.tensor([92542]).cuda(), #'[UNUSED_TOKEN_145]'
         | 
| 1249 | 
            +
                                    ]
         | 
| 1250 | 
            +
                    stopping_criteria = StoppingCriteriaList(
         | 
| 1251 | 
            +
                            [StoppingCriteriaSub(stops=stop_words_ids)])
         | 
| 1252 | 
            +
                    result = []
         | 
| 1253 | 
            +
                    for i in range(3):
         | 
| 1254 | 
            +
                        print(f'------attempt {i}------')
         | 
| 1255 | 
            +
                        d = f"{question}"
         | 
| 1256 | 
            +
                        input_ids = tokenizer(d, return_tensors="pt")["input_ids"]
         | 
| 1257 | 
            +
                        eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["[UNUSED_TOKEN_145]"])[0]]
         | 
| 1258 | 
            +
                        with torch.no_grad():
         | 
| 1259 | 
            +
                            generate = self.generate(input_ids.cuda(), 
         | 
| 1260 | 
            +
                                                        do_sample=True,
         | 
| 1261 | 
            +
                                                        temperature=1.0,
         | 
| 1262 | 
            +
                                                        repetition_penalty=1.005, 
         | 
| 1263 | 
            +
                                                        max_new_tokens=1000, 
         | 
| 1264 | 
            +
                                                        top_p=0.8, 
         | 
| 1265 | 
            +
                                                        top_k=50, 
         | 
| 1266 | 
            +
                                                        eos_token_id=eos_token_id,
         | 
| 1267 | 
            +
                                                        stopping_criteria=stopping_criteria,)
         | 
| 1268 | 
            +
                        response = tokenizer.decode(generate[0].tolist(), skip_special_tokens=True)
         | 
| 1269 | 
            +
                        print(response[len('[UNUSED_TOKEN_146]user '):-len('[UNUSED_TOKEN_145]\n')])
         | 
| 1270 | 
            +
             | 
    	
        pytorch_model.bin.index.json
    ADDED
    
    | @@ -0,0 +1,554 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 16694026240
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "model.layers.0.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 7 | 
            +
                "model.layers.0.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 8 | 
            +
                "model.layers.0.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 9 | 
            +
                "model.layers.0.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 10 | 
            +
                "model.layers.0.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 11 | 
            +
                "model.layers.0.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 12 | 
            +
                "model.layers.0.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 13 | 
            +
                "model.layers.0.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 14 | 
            +
                "model.layers.0.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 15 | 
            +
                "model.layers.0.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 16 | 
            +
                "model.layers.0.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 17 | 
            +
                "model.layers.0.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 18 | 
            +
                "model.layers.0.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 19 | 
            +
                "model.layers.0.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 20 | 
            +
                "model.layers.0.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 21 | 
            +
                "model.layers.0.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 22 | 
            +
                "model.layers.0.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 23 | 
            +
                "model.layers.1.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 24 | 
            +
                "model.layers.1.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 25 | 
            +
                "model.layers.1.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 26 | 
            +
                "model.layers.1.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 27 | 
            +
                "model.layers.1.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 28 | 
            +
                "model.layers.1.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 29 | 
            +
                "model.layers.1.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 30 | 
            +
                "model.layers.1.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 31 | 
            +
                "model.layers.1.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 32 | 
            +
                "model.layers.1.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 33 | 
            +
                "model.layers.1.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 34 | 
            +
                "model.layers.1.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 35 | 
            +
                "model.layers.1.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 36 | 
            +
                "model.layers.1.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 37 | 
            +
                "model.layers.1.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 38 | 
            +
                "model.layers.1.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 39 | 
            +
                "model.layers.1.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 40 | 
            +
                "model.layers.10.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 41 | 
            +
                "model.layers.10.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 42 | 
            +
                "model.layers.10.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 43 | 
            +
                "model.layers.10.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 44 | 
            +
                "model.layers.10.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 45 | 
            +
                "model.layers.10.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 46 | 
            +
                "model.layers.10.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 47 | 
            +
                "model.layers.10.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 48 | 
            +
                "model.layers.10.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 49 | 
            +
                "model.layers.10.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 50 | 
            +
                "model.layers.10.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 51 | 
            +
                "model.layers.10.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 52 | 
            +
                "model.layers.10.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 53 | 
            +
                "model.layers.10.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 54 | 
            +
                "model.layers.10.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 55 | 
            +
                "model.layers.10.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 56 | 
            +
                "model.layers.10.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 57 | 
            +
                "model.layers.11.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 58 | 
            +
                "model.layers.11.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 59 | 
            +
                "model.layers.11.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 60 | 
            +
                "model.layers.11.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 61 | 
            +
                "model.layers.11.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 62 | 
            +
                "model.layers.11.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 63 | 
            +
                "model.layers.11.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 64 | 
            +
                "model.layers.11.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 65 | 
            +
                "model.layers.11.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 66 | 
            +
                "model.layers.11.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 67 | 
            +
                "model.layers.11.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 68 | 
            +
                "model.layers.11.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 69 | 
            +
                "model.layers.11.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 70 | 
            +
                "model.layers.11.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 71 | 
            +
                "model.layers.11.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 72 | 
            +
                "model.layers.11.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 73 | 
            +
                "model.layers.11.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 74 | 
            +
                "model.layers.12.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 75 | 
            +
                "model.layers.12.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 76 | 
            +
                "model.layers.12.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 77 | 
            +
                "model.layers.12.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 78 | 
            +
                "model.layers.12.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 79 | 
            +
                "model.layers.12.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 80 | 
            +
                "model.layers.12.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 81 | 
            +
                "model.layers.12.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 82 | 
            +
                "model.layers.12.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 83 | 
            +
                "model.layers.12.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 84 | 
            +
                "model.layers.12.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 85 | 
            +
                "model.layers.12.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 86 | 
            +
                "model.layers.12.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 87 | 
            +
                "model.layers.12.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 88 | 
            +
                "model.layers.12.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 89 | 
            +
                "model.layers.12.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 90 | 
            +
                "model.layers.12.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 91 | 
            +
                "model.layers.13.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 92 | 
            +
                "model.layers.13.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 93 | 
            +
                "model.layers.13.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 94 | 
            +
                "model.layers.13.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 95 | 
            +
                "model.layers.13.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 96 | 
            +
                "model.layers.13.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 97 | 
            +
                "model.layers.13.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 98 | 
            +
                "model.layers.13.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 99 | 
            +
                "model.layers.13.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 100 | 
            +
                "model.layers.13.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 101 | 
            +
                "model.layers.13.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 102 | 
            +
                "model.layers.13.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 103 | 
            +
                "model.layers.13.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 104 | 
            +
                "model.layers.13.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 105 | 
            +
                "model.layers.13.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 106 | 
            +
                "model.layers.13.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 107 | 
            +
                "model.layers.13.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 108 | 
            +
                "model.layers.14.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 109 | 
            +
                "model.layers.14.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 110 | 
            +
                "model.layers.14.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 111 | 
            +
                "model.layers.14.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 112 | 
            +
                "model.layers.14.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 113 | 
            +
                "model.layers.14.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 114 | 
            +
                "model.layers.14.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 115 | 
            +
                "model.layers.14.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 116 | 
            +
                "model.layers.14.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 117 | 
            +
                "model.layers.14.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 118 | 
            +
                "model.layers.14.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 119 | 
            +
                "model.layers.14.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 120 | 
            +
                "model.layers.14.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 121 | 
            +
                "model.layers.14.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 122 | 
            +
                "model.layers.14.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 123 | 
            +
                "model.layers.14.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 124 | 
            +
                "model.layers.14.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 125 | 
            +
                "model.layers.15.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 126 | 
            +
                "model.layers.15.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 127 | 
            +
                "model.layers.15.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 128 | 
            +
                "model.layers.15.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 129 | 
            +
                "model.layers.15.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 130 | 
            +
                "model.layers.15.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 131 | 
            +
                "model.layers.15.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 132 | 
            +
                "model.layers.15.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 133 | 
            +
                "model.layers.15.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 134 | 
            +
                "model.layers.15.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 135 | 
            +
                "model.layers.15.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 136 | 
            +
                "model.layers.15.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 137 | 
            +
                "model.layers.15.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 138 | 
            +
                "model.layers.15.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 139 | 
            +
                "model.layers.15.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 140 | 
            +
                "model.layers.15.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 141 | 
            +
                "model.layers.15.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 142 | 
            +
                "model.layers.16.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 143 | 
            +
                "model.layers.16.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 144 | 
            +
                "model.layers.16.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 145 | 
            +
                "model.layers.16.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 146 | 
            +
                "model.layers.16.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 147 | 
            +
                "model.layers.16.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 148 | 
            +
                "model.layers.16.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 149 | 
            +
                "model.layers.16.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 150 | 
            +
                "model.layers.16.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 151 | 
            +
                "model.layers.16.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 152 | 
            +
                "model.layers.16.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 153 | 
            +
                "model.layers.16.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 154 | 
            +
                "model.layers.16.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 155 | 
            +
                "model.layers.16.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 156 | 
            +
                "model.layers.16.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 157 | 
            +
                "model.layers.16.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 158 | 
            +
                "model.layers.16.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 159 | 
            +
                "model.layers.17.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 160 | 
            +
                "model.layers.17.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 161 | 
            +
                "model.layers.17.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 162 | 
            +
                "model.layers.17.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 163 | 
            +
                "model.layers.17.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 164 | 
            +
                "model.layers.17.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 165 | 
            +
                "model.layers.17.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 166 | 
            +
                "model.layers.17.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 167 | 
            +
                "model.layers.17.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 168 | 
            +
                "model.layers.17.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 169 | 
            +
                "model.layers.17.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 170 | 
            +
                "model.layers.17.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 171 | 
            +
                "model.layers.17.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 172 | 
            +
                "model.layers.17.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 173 | 
            +
                "model.layers.17.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 174 | 
            +
                "model.layers.17.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 175 | 
            +
                "model.layers.17.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 176 | 
            +
                "model.layers.18.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 177 | 
            +
                "model.layers.18.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 178 | 
            +
                "model.layers.18.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 179 | 
            +
                "model.layers.18.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 180 | 
            +
                "model.layers.18.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 181 | 
            +
                "model.layers.18.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 182 | 
            +
                "model.layers.18.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 183 | 
            +
                "model.layers.18.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 184 | 
            +
                "model.layers.18.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 185 | 
            +
                "model.layers.18.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 186 | 
            +
                "model.layers.18.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 187 | 
            +
                "model.layers.18.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 188 | 
            +
                "model.layers.18.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 189 | 
            +
                "model.layers.18.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 190 | 
            +
                "model.layers.18.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 191 | 
            +
                "model.layers.18.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 192 | 
            +
                "model.layers.18.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 193 | 
            +
                "model.layers.19.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 194 | 
            +
                "model.layers.19.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 195 | 
            +
                "model.layers.19.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 196 | 
            +
                "model.layers.19.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 197 | 
            +
                "model.layers.19.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 198 | 
            +
                "model.layers.19.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 199 | 
            +
                "model.layers.19.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 200 | 
            +
                "model.layers.19.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 201 | 
            +
                "model.layers.19.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 202 | 
            +
                "model.layers.19.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 203 | 
            +
                "model.layers.19.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 204 | 
            +
                "model.layers.19.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 205 | 
            +
                "model.layers.19.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 206 | 
            +
                "model.layers.19.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 207 | 
            +
                "model.layers.19.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 208 | 
            +
                "model.layers.19.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 209 | 
            +
                "model.layers.19.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 210 | 
            +
                "model.layers.2.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 211 | 
            +
                "model.layers.2.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 212 | 
            +
                "model.layers.2.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 213 | 
            +
                "model.layers.2.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 214 | 
            +
                "model.layers.2.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 215 | 
            +
                "model.layers.2.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 216 | 
            +
                "model.layers.2.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 217 | 
            +
                "model.layers.2.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 218 | 
            +
                "model.layers.2.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 219 | 
            +
                "model.layers.2.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 220 | 
            +
                "model.layers.2.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 221 | 
            +
                "model.layers.2.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 222 | 
            +
                "model.layers.2.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 223 | 
            +
                "model.layers.2.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 224 | 
            +
                "model.layers.2.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 225 | 
            +
                "model.layers.2.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 226 | 
            +
                "model.layers.2.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 227 | 
            +
                "model.layers.20.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 228 | 
            +
                "model.layers.20.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 229 | 
            +
                "model.layers.20.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 230 | 
            +
                "model.layers.20.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 231 | 
            +
                "model.layers.20.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 232 | 
            +
                "model.layers.20.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 233 | 
            +
                "model.layers.20.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 234 | 
            +
                "model.layers.20.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 235 | 
            +
                "model.layers.20.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 236 | 
            +
                "model.layers.20.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 237 | 
            +
                "model.layers.20.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 238 | 
            +
                "model.layers.20.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 239 | 
            +
                "model.layers.20.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 240 | 
            +
                "model.layers.20.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 241 | 
            +
                "model.layers.20.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 242 | 
            +
                "model.layers.20.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 243 | 
            +
                "model.layers.20.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 244 | 
            +
                "model.layers.21.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 245 | 
            +
                "model.layers.21.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 246 | 
            +
                "model.layers.21.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 247 | 
            +
                "model.layers.21.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 248 | 
            +
                "model.layers.21.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 249 | 
            +
                "model.layers.21.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 250 | 
            +
                "model.layers.21.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 251 | 
            +
                "model.layers.21.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 252 | 
            +
                "model.layers.21.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 253 | 
            +
                "model.layers.21.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 254 | 
            +
                "model.layers.21.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 255 | 
            +
                "model.layers.21.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 256 | 
            +
                "model.layers.21.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 257 | 
            +
                "model.layers.21.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 258 | 
            +
                "model.layers.21.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 259 | 
            +
                "model.layers.21.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 260 | 
            +
                "model.layers.21.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 261 | 
            +
                "model.layers.22.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 262 | 
            +
                "model.layers.22.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 263 | 
            +
                "model.layers.22.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 264 | 
            +
                "model.layers.22.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 265 | 
            +
                "model.layers.22.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 266 | 
            +
                "model.layers.22.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 267 | 
            +
                "model.layers.22.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 268 | 
            +
                "model.layers.22.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 269 | 
            +
                "model.layers.22.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 270 | 
            +
                "model.layers.22.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 271 | 
            +
                "model.layers.22.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 272 | 
            +
                "model.layers.22.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 273 | 
            +
                "model.layers.22.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 274 | 
            +
                "model.layers.22.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 275 | 
            +
                "model.layers.22.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 276 | 
            +
                "model.layers.22.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 277 | 
            +
                "model.layers.22.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 278 | 
            +
                "model.layers.23.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 279 | 
            +
                "model.layers.23.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 280 | 
            +
                "model.layers.23.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 281 | 
            +
                "model.layers.23.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 282 | 
            +
                "model.layers.23.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 283 | 
            +
                "model.layers.23.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 284 | 
            +
                "model.layers.23.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 285 | 
            +
                "model.layers.23.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 286 | 
            +
                "model.layers.23.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 287 | 
            +
                "model.layers.23.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 288 | 
            +
                "model.layers.23.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 289 | 
            +
                "model.layers.23.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 290 | 
            +
                "model.layers.23.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 291 | 
            +
                "model.layers.23.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 292 | 
            +
                "model.layers.23.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 293 | 
            +
                "model.layers.23.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 294 | 
            +
                "model.layers.23.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 295 | 
            +
                "model.layers.24.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 296 | 
            +
                "model.layers.24.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 297 | 
            +
                "model.layers.24.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 298 | 
            +
                "model.layers.24.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 299 | 
            +
                "model.layers.24.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 300 | 
            +
                "model.layers.24.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 301 | 
            +
                "model.layers.24.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 302 | 
            +
                "model.layers.24.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 303 | 
            +
                "model.layers.24.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 304 | 
            +
                "model.layers.24.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 305 | 
            +
                "model.layers.24.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 306 | 
            +
                "model.layers.24.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 307 | 
            +
                "model.layers.24.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 308 | 
            +
                "model.layers.24.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 309 | 
            +
                "model.layers.24.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 310 | 
            +
                "model.layers.24.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 311 | 
            +
                "model.layers.24.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 312 | 
            +
                "model.layers.25.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 313 | 
            +
                "model.layers.25.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 314 | 
            +
                "model.layers.25.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 315 | 
            +
                "model.layers.25.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 316 | 
            +
                "model.layers.25.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 317 | 
            +
                "model.layers.25.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 318 | 
            +
                "model.layers.25.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 319 | 
            +
                "model.layers.25.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 320 | 
            +
                "model.layers.25.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 321 | 
            +
                "model.layers.25.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 322 | 
            +
                "model.layers.25.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 323 | 
            +
                "model.layers.25.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 324 | 
            +
                "model.layers.25.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 325 | 
            +
                "model.layers.25.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 326 | 
            +
                "model.layers.25.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 327 | 
            +
                "model.layers.25.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 328 | 
            +
                "model.layers.25.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 329 | 
            +
                "model.layers.26.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 330 | 
            +
                "model.layers.26.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 331 | 
            +
                "model.layers.26.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 332 | 
            +
                "model.layers.26.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 333 | 
            +
                "model.layers.26.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 334 | 
            +
                "model.layers.26.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 335 | 
            +
                "model.layers.26.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 336 | 
            +
                "model.layers.26.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 337 | 
            +
                "model.layers.26.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 338 | 
            +
                "model.layers.26.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 339 | 
            +
                "model.layers.26.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 340 | 
            +
                "model.layers.26.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 341 | 
            +
                "model.layers.26.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 342 | 
            +
                "model.layers.26.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 343 | 
            +
                "model.layers.26.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 344 | 
            +
                "model.layers.26.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 345 | 
            +
                "model.layers.26.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 346 | 
            +
                "model.layers.27.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 347 | 
            +
                "model.layers.27.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 348 | 
            +
                "model.layers.27.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 349 | 
            +
                "model.layers.27.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 350 | 
            +
                "model.layers.27.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 351 | 
            +
                "model.layers.27.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 352 | 
            +
                "model.layers.27.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 353 | 
            +
                "model.layers.27.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 354 | 
            +
                "model.layers.27.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 355 | 
            +
                "model.layers.27.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 356 | 
            +
                "model.layers.27.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 357 | 
            +
                "model.layers.27.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 358 | 
            +
                "model.layers.27.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 359 | 
            +
                "model.layers.27.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 360 | 
            +
                "model.layers.27.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 361 | 
            +
                "model.layers.27.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 362 | 
            +
                "model.layers.27.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 363 | 
            +
                "model.layers.28.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 364 | 
            +
                "model.layers.28.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 365 | 
            +
                "model.layers.28.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 366 | 
            +
                "model.layers.28.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 367 | 
            +
                "model.layers.28.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 368 | 
            +
                "model.layers.28.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 369 | 
            +
                "model.layers.28.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 370 | 
            +
                "model.layers.28.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 371 | 
            +
                "model.layers.28.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 372 | 
            +
                "model.layers.28.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 373 | 
            +
                "model.layers.28.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 374 | 
            +
                "model.layers.28.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 375 | 
            +
                "model.layers.28.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 376 | 
            +
                "model.layers.28.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 377 | 
            +
                "model.layers.28.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 378 | 
            +
                "model.layers.28.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 379 | 
            +
                "model.layers.28.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 380 | 
            +
                "model.layers.29.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 381 | 
            +
                "model.layers.29.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 382 | 
            +
                "model.layers.29.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 383 | 
            +
                "model.layers.29.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 384 | 
            +
                "model.layers.29.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 385 | 
            +
                "model.layers.29.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 386 | 
            +
                "model.layers.29.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 387 | 
            +
                "model.layers.29.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 388 | 
            +
                "model.layers.29.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 389 | 
            +
                "model.layers.29.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 390 | 
            +
                "model.layers.29.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 391 | 
            +
                "model.layers.29.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 392 | 
            +
                "model.layers.29.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 393 | 
            +
                "model.layers.29.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 394 | 
            +
                "model.layers.29.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 395 | 
            +
                "model.layers.29.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 396 | 
            +
                "model.layers.29.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 397 | 
            +
                "model.layers.3.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 398 | 
            +
                "model.layers.3.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 399 | 
            +
                "model.layers.3.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 400 | 
            +
                "model.layers.3.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 401 | 
            +
                "model.layers.3.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 402 | 
            +
                "model.layers.3.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 403 | 
            +
                "model.layers.3.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 404 | 
            +
                "model.layers.3.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 405 | 
            +
                "model.layers.3.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 406 | 
            +
                "model.layers.3.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 407 | 
            +
                "model.layers.3.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 408 | 
            +
                "model.layers.3.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 409 | 
            +
                "model.layers.3.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 410 | 
            +
                "model.layers.3.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 411 | 
            +
                "model.layers.3.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 412 | 
            +
                "model.layers.3.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 413 | 
            +
                "model.layers.3.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 414 | 
            +
                "model.layers.30.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 415 | 
            +
                "model.layers.30.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 416 | 
            +
                "model.layers.30.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 417 | 
            +
                "model.layers.30.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 418 | 
            +
                "model.layers.30.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 419 | 
            +
                "model.layers.30.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 420 | 
            +
                "model.layers.30.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 421 | 
            +
                "model.layers.30.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 422 | 
            +
                "model.layers.30.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 423 | 
            +
                "model.layers.30.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 424 | 
            +
                "model.layers.30.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 425 | 
            +
                "model.layers.30.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 426 | 
            +
                "model.layers.30.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 427 | 
            +
                "model.layers.30.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 428 | 
            +
                "model.layers.30.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 429 | 
            +
                "model.layers.30.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 430 | 
            +
                "model.layers.30.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 431 | 
            +
                "model.layers.31.attention.wo.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 432 | 
            +
                "model.layers.31.attention.wo.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 433 | 
            +
                "model.layers.31.attention.wo.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 434 | 
            +
                "model.layers.31.attention.wqkv.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 435 | 
            +
                "model.layers.31.attention.wqkv.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 436 | 
            +
                "model.layers.31.attention.wqkv.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 437 | 
            +
                "model.layers.31.attention_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 438 | 
            +
                "model.layers.31.feed_forward.w1.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 439 | 
            +
                "model.layers.31.feed_forward.w1.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 440 | 
            +
                "model.layers.31.feed_forward.w1.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 441 | 
            +
                "model.layers.31.feed_forward.w2.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 442 | 
            +
                "model.layers.31.feed_forward.w2.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 443 | 
            +
                "model.layers.31.feed_forward.w2.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 444 | 
            +
                "model.layers.31.feed_forward.w3.Plora_A.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 445 | 
            +
                "model.layers.31.feed_forward.w3.Plora_B.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 446 | 
            +
                "model.layers.31.feed_forward.w3.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 447 | 
            +
                "model.layers.31.ffn_norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 448 | 
            +
                "model.layers.4.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 449 | 
            +
                "model.layers.4.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 450 | 
            +
                "model.layers.4.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 451 | 
            +
                "model.layers.4.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 452 | 
            +
                "model.layers.4.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 453 | 
            +
                "model.layers.4.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 454 | 
            +
                "model.layers.4.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 455 | 
            +
                "model.layers.4.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 456 | 
            +
                "model.layers.4.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 457 | 
            +
                "model.layers.4.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 458 | 
            +
                "model.layers.4.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 459 | 
            +
                "model.layers.4.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 460 | 
            +
                "model.layers.4.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 461 | 
            +
                "model.layers.4.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 462 | 
            +
                "model.layers.4.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 463 | 
            +
                "model.layers.4.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 464 | 
            +
                "model.layers.4.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 465 | 
            +
                "model.layers.5.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 466 | 
            +
                "model.layers.5.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 467 | 
            +
                "model.layers.5.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 468 | 
            +
                "model.layers.5.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 469 | 
            +
                "model.layers.5.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 470 | 
            +
                "model.layers.5.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 471 | 
            +
                "model.layers.5.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 472 | 
            +
                "model.layers.5.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 473 | 
            +
                "model.layers.5.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 474 | 
            +
                "model.layers.5.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 475 | 
            +
                "model.layers.5.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 476 | 
            +
                "model.layers.5.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 477 | 
            +
                "model.layers.5.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 478 | 
            +
                "model.layers.5.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 479 | 
            +
                "model.layers.5.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 480 | 
            +
                "model.layers.5.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 481 | 
            +
                "model.layers.5.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 482 | 
            +
                "model.layers.6.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 483 | 
            +
                "model.layers.6.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 484 | 
            +
                "model.layers.6.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 485 | 
            +
                "model.layers.6.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 486 | 
            +
                "model.layers.6.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 487 | 
            +
                "model.layers.6.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 488 | 
            +
                "model.layers.6.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 489 | 
            +
                "model.layers.6.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 490 | 
            +
                "model.layers.6.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 491 | 
            +
                "model.layers.6.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 492 | 
            +
                "model.layers.6.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 493 | 
            +
                "model.layers.6.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 494 | 
            +
                "model.layers.6.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 495 | 
            +
                "model.layers.6.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 496 | 
            +
                "model.layers.6.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 497 | 
            +
                "model.layers.6.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 498 | 
            +
                "model.layers.6.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 499 | 
            +
                "model.layers.7.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 500 | 
            +
                "model.layers.7.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 501 | 
            +
                "model.layers.7.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 502 | 
            +
                "model.layers.7.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 503 | 
            +
                "model.layers.7.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 504 | 
            +
                "model.layers.7.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 505 | 
            +
                "model.layers.7.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 506 | 
            +
                "model.layers.7.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 507 | 
            +
                "model.layers.7.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 508 | 
            +
                "model.layers.7.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 509 | 
            +
                "model.layers.7.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 510 | 
            +
                "model.layers.7.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 511 | 
            +
                "model.layers.7.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 512 | 
            +
                "model.layers.7.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 513 | 
            +
                "model.layers.7.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 514 | 
            +
                "model.layers.7.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 515 | 
            +
                "model.layers.7.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 516 | 
            +
                "model.layers.8.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 517 | 
            +
                "model.layers.8.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 518 | 
            +
                "model.layers.8.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 519 | 
            +
                "model.layers.8.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 520 | 
            +
                "model.layers.8.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 521 | 
            +
                "model.layers.8.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 522 | 
            +
                "model.layers.8.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 523 | 
            +
                "model.layers.8.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 524 | 
            +
                "model.layers.8.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 525 | 
            +
                "model.layers.8.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 526 | 
            +
                "model.layers.8.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 527 | 
            +
                "model.layers.8.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 528 | 
            +
                "model.layers.8.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 529 | 
            +
                "model.layers.8.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 530 | 
            +
                "model.layers.8.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 531 | 
            +
                "model.layers.8.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 532 | 
            +
                "model.layers.8.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 533 | 
            +
                "model.layers.9.attention.wo.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 534 | 
            +
                "model.layers.9.attention.wo.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 535 | 
            +
                "model.layers.9.attention.wo.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 536 | 
            +
                "model.layers.9.attention.wqkv.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 537 | 
            +
                "model.layers.9.attention.wqkv.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 538 | 
            +
                "model.layers.9.attention.wqkv.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 539 | 
            +
                "model.layers.9.attention_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 540 | 
            +
                "model.layers.9.feed_forward.w1.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 541 | 
            +
                "model.layers.9.feed_forward.w1.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 542 | 
            +
                "model.layers.9.feed_forward.w1.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 543 | 
            +
                "model.layers.9.feed_forward.w2.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 544 | 
            +
                "model.layers.9.feed_forward.w2.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 545 | 
            +
                "model.layers.9.feed_forward.w2.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 546 | 
            +
                "model.layers.9.feed_forward.w3.Plora_A.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 547 | 
            +
                "model.layers.9.feed_forward.w3.Plora_B.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 548 | 
            +
                "model.layers.9.feed_forward.w3.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 549 | 
            +
                "model.layers.9.ffn_norm.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 550 | 
            +
                "model.norm.weight": "pytorch_model-00002-of-00002.bin",
         | 
| 551 | 
            +
                "model.tok_embeddings.weight": "pytorch_model-00001-of-00002.bin",
         | 
| 552 | 
            +
                "output.weight": "pytorch_model-00002-of-00002.bin"
         | 
| 553 | 
            +
              }
         | 
| 554 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": "<s>",
         | 
| 3 | 
            +
              "eos_token": "</s>",
         | 
| 4 | 
            +
              "pad_token": "</s>",
         | 
| 5 | 
            +
              "unk_token": "<unk>"
         | 
| 6 | 
            +
            }
         | 
    	
        tokenization_internlm.py
    ADDED
    
    | @@ -0,0 +1,240 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) InternLM. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            """Tokenization classes for IntermLM."""
         | 
| 22 | 
            +
            import os
         | 
| 23 | 
            +
            from shutil import copyfile
         | 
| 24 | 
            +
            from typing import Any, Dict, List, Optional, Tuple
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import sentencepiece as spm
         | 
| 27 | 
            +
            from transformers.tokenization_utils import PreTrainedTokenizer
         | 
| 28 | 
            +
            from transformers.utils import logging
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            PRETRAINED_VOCAB_FILES_MAP = {}
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            class InternLMTokenizer(PreTrainedTokenizer):
         | 
| 38 | 
            +
                """
         | 
| 39 | 
            +
                Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                Args:
         | 
| 42 | 
            +
                    vocab_file (`str`):
         | 
| 43 | 
            +
                        Path to the vocabulary file.
         | 
| 44 | 
            +
                """
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                vocab_files_names = VOCAB_FILES_NAMES
         | 
| 47 | 
            +
                pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
         | 
| 48 | 
            +
                model_input_names = ["input_ids", "attention_mask"]
         | 
| 49 | 
            +
                _auto_class = "AutoTokenizer"
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                def __init__(
         | 
| 52 | 
            +
                    self,
         | 
| 53 | 
            +
                    vocab_file,
         | 
| 54 | 
            +
                    unk_token="<unk>",
         | 
| 55 | 
            +
                    bos_token="<s>",
         | 
| 56 | 
            +
                    eos_token="</s>",
         | 
| 57 | 
            +
                    pad_token="</s>",
         | 
| 58 | 
            +
                    sp_model_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 59 | 
            +
                    add_bos_token=True,
         | 
| 60 | 
            +
                    add_eos_token=False,
         | 
| 61 | 
            +
                    decode_with_prefix_space=False,
         | 
| 62 | 
            +
                    clean_up_tokenization_spaces=False,
         | 
| 63 | 
            +
                    **kwargs,
         | 
| 64 | 
            +
                ):
         | 
| 65 | 
            +
                    self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
         | 
| 66 | 
            +
                    self.vocab_file = vocab_file
         | 
| 67 | 
            +
                    self.add_bos_token = add_bos_token
         | 
| 68 | 
            +
                    self.add_eos_token = add_eos_token
         | 
| 69 | 
            +
                    self.decode_with_prefix_space = decode_with_prefix_space
         | 
| 70 | 
            +
                    self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
         | 
| 71 | 
            +
                    self.sp_model.Load(vocab_file)
         | 
| 72 | 
            +
                    self._no_prefix_space_tokens = None
         | 
| 73 | 
            +
                    super().__init__(
         | 
| 74 | 
            +
                        bos_token=bos_token,
         | 
| 75 | 
            +
                        eos_token=eos_token,
         | 
| 76 | 
            +
                        unk_token=unk_token,
         | 
| 77 | 
            +
                        pad_token=pad_token,
         | 
| 78 | 
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         | 
| 79 | 
            +
                        **kwargs,
         | 
| 80 | 
            +
                    )
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    """ Initialization"""
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                @property
         | 
| 85 | 
            +
                def no_prefix_space_tokens(self):
         | 
| 86 | 
            +
                    if self._no_prefix_space_tokens is None:
         | 
| 87 | 
            +
                        vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
         | 
| 88 | 
            +
                        self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
         | 
| 89 | 
            +
                    return self._no_prefix_space_tokens
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                @property
         | 
| 92 | 
            +
                def vocab_size(self):
         | 
| 93 | 
            +
                    """Returns vocab size"""
         | 
| 94 | 
            +
                    return self.sp_model.get_piece_size()
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                @property
         | 
| 97 | 
            +
                def bos_token_id(self) -> Optional[int]:
         | 
| 98 | 
            +
                    return self.sp_model.bos_id()
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                @property
         | 
| 101 | 
            +
                def eos_token_id(self) -> Optional[int]:
         | 
| 102 | 
            +
                    return self.sp_model.eos_id()
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                def get_vocab(self):
         | 
| 105 | 
            +
                    """Returns vocab as a dict"""
         | 
| 106 | 
            +
                    vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
         | 
| 107 | 
            +
                    vocab.update(self.added_tokens_encoder)
         | 
| 108 | 
            +
                    return vocab
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def _tokenize(self, text):
         | 
| 111 | 
            +
                    """Returns a tokenized string."""
         | 
| 112 | 
            +
                    return self.sp_model.encode(text, out_type=str)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                def _convert_token_to_id(self, token):
         | 
| 115 | 
            +
                    """Converts a token (str) in an id using the vocab."""
         | 
| 116 | 
            +
                    return self.sp_model.piece_to_id(token)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                def _convert_id_to_token(self, index):
         | 
| 119 | 
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         | 
| 120 | 
            +
                    token = self.sp_model.IdToPiece(index)
         | 
| 121 | 
            +
                    return token
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def _maybe_add_prefix_space(self, tokens, decoded):
         | 
| 124 | 
            +
                    if tokens and tokens[0] not in self.no_prefix_space_tokens:
         | 
| 125 | 
            +
                        return " " + decoded
         | 
| 126 | 
            +
                    else:
         | 
| 127 | 
            +
                        return decoded
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                def convert_tokens_to_string(self, tokens):
         | 
| 130 | 
            +
                    """Converts a sequence of tokens (string) in a single string."""
         | 
| 131 | 
            +
                    current_sub_tokens = []
         | 
| 132 | 
            +
                    out_string = ""
         | 
| 133 | 
            +
                    prev_is_special = False
         | 
| 134 | 
            +
                    for token in tokens:
         | 
| 135 | 
            +
                        # make sure that special tokens are not decoded using sentencepiece model
         | 
| 136 | 
            +
                        if token in self.all_special_tokens:
         | 
| 137 | 
            +
                            if not prev_is_special:
         | 
| 138 | 
            +
                                out_string += " "
         | 
| 139 | 
            +
                            out_string += self.sp_model.decode(current_sub_tokens) + token
         | 
| 140 | 
            +
                            prev_is_special = True
         | 
| 141 | 
            +
                            current_sub_tokens = []
         | 
| 142 | 
            +
                        else:
         | 
| 143 | 
            +
                            current_sub_tokens.append(token)
         | 
| 144 | 
            +
                            prev_is_special = False
         | 
| 145 | 
            +
                    out_string += self.sp_model.decode(current_sub_tokens)
         | 
| 146 | 
            +
                    out_string = self.clean_up_tokenization(out_string)
         | 
| 147 | 
            +
                    out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
         | 
| 148 | 
            +
                    return out_string[1:]
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
         | 
| 151 | 
            +
                    """
         | 
| 152 | 
            +
                    Save the vocabulary and special tokens file to a directory.
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    Args:
         | 
| 155 | 
            +
                        save_directory (`str`):
         | 
| 156 | 
            +
                            The directory in which to save the vocabulary.
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    Returns:
         | 
| 159 | 
            +
                        `Tuple(str)`: Paths to the files saved.
         | 
| 160 | 
            +
                    """
         | 
| 161 | 
            +
                    if not os.path.isdir(save_directory):
         | 
| 162 | 
            +
                        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
         | 
| 163 | 
            +
                        return
         | 
| 164 | 
            +
                    out_vocab_file = os.path.join(
         | 
| 165 | 
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
         | 
| 166 | 
            +
                    )
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
         | 
| 169 | 
            +
                        copyfile(self.vocab_file, out_vocab_file)
         | 
| 170 | 
            +
                    elif not os.path.isfile(self.vocab_file):
         | 
| 171 | 
            +
                        with open(out_vocab_file, "wb") as fi:
         | 
| 172 | 
            +
                            content_spiece_model = self.sp_model.serialized_model_proto()
         | 
| 173 | 
            +
                            fi.write(content_spiece_model)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    return (out_vocab_file,)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
         | 
| 178 | 
            +
                    if self.add_bos_token:
         | 
| 179 | 
            +
                        bos_token_ids = [self.bos_token_id]
         | 
| 180 | 
            +
                    else:
         | 
| 181 | 
            +
                        bos_token_ids = []
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    output = bos_token_ids + token_ids_0
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    if token_ids_1 is not None:
         | 
| 186 | 
            +
                        output = output + token_ids_1
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    if self.add_eos_token:
         | 
| 189 | 
            +
                        output = output + [self.eos_token_id]
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                    return output
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                def get_special_tokens_mask(
         | 
| 194 | 
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
         | 
| 195 | 
            +
                ) -> List[int]:
         | 
| 196 | 
            +
                    """
         | 
| 197 | 
            +
                    Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
         | 
| 198 | 
            +
                    special tokens using the tokenizer `prepare_for_model` method.
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    Args:
         | 
| 201 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 202 | 
            +
                            List of IDs.
         | 
| 203 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 204 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 205 | 
            +
                        already_has_special_tokens (`bool`, *optional*, defaults to `False`):
         | 
| 206 | 
            +
                            Whether or not the token list is already formatted with special tokens for the model.
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    Returns:
         | 
| 209 | 
            +
                        `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
         | 
| 210 | 
            +
                    """
         | 
| 211 | 
            +
                    if already_has_special_tokens:
         | 
| 212 | 
            +
                        return super().get_special_tokens_mask(
         | 
| 213 | 
            +
                            token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
         | 
| 214 | 
            +
                        )
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    if token_ids_1 is None:
         | 
| 217 | 
            +
                        return [1] + ([0] * len(token_ids_0)) + [1]
         | 
| 218 | 
            +
                    return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                def create_token_type_ids_from_sequences(
         | 
| 221 | 
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
         | 
| 222 | 
            +
                ) -> List[int]:
         | 
| 223 | 
            +
                    """
         | 
| 224 | 
            +
                    Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
         | 
| 225 | 
            +
                    use of token type ids, therefore a list of zeros is returned.
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    Args:
         | 
| 228 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 229 | 
            +
                            List of IDs.
         | 
| 230 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 231 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    Returns:
         | 
| 234 | 
            +
                        `List[int]`: List of zeros.
         | 
| 235 | 
            +
                    """
         | 
| 236 | 
            +
                    eos = [self.eos_token_id]
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    if token_ids_1 is None:
         | 
| 239 | 
            +
                        return len(token_ids_0 + eos) * [0]
         | 
| 240 | 
            +
                    return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
         | 
    	
        tokenizer.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
         | 
| 3 | 
            +
            size 1477754
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,16 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "auto_map": {
         | 
| 3 | 
            +
                "AutoTokenizer": [
         | 
| 4 | 
            +
                  "tokenization_internlm.InternLMTokenizer",
         | 
| 5 | 
            +
                  null
         | 
| 6 | 
            +
                ]
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              "bos_token": "<s>",
         | 
| 9 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 10 | 
            +
              "eos_token": "</s>",
         | 
| 11 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 12 | 
            +
              "pad_token": "</s>",
         | 
| 13 | 
            +
              "padding_side": "right",
         | 
| 14 | 
            +
              "tokenizer_class": "InternLMTokenizer",
         | 
| 15 | 
            +
              "unk_token": "<unk>"
         | 
| 16 | 
            +
            }
         |