Commit
·
21605a9
1
Parent(s):
6550819
Upload Sentiment_analysis_with_bert.py
Browse files- Sentiment_analysis_with_bert.py +523 -0
Sentiment_analysis_with_bert.py
ADDED
|
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!pip install -q -U watermark
|
| 2 |
+
|
| 3 |
+
!pip install -qq transformers
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import transformers
|
| 7 |
+
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import seaborn as sns
|
| 13 |
+
from pylab import rcParams
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
from matplotlib import rc
|
| 16 |
+
from sklearn.model_selection import train_test_split
|
| 17 |
+
from sklearn.metrics import confusion_matrix, classification_report
|
| 18 |
+
from collections import defaultdict
|
| 19 |
+
from textwrap import wrap
|
| 20 |
+
|
| 21 |
+
from torch import nn, optim
|
| 22 |
+
from torch.utils.data import Dataset, DataLoader
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
sns.set(style='whitegrid', palette='muted', font_scale=1.2)
|
| 28 |
+
|
| 29 |
+
HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"]
|
| 30 |
+
|
| 31 |
+
sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))
|
| 32 |
+
|
| 33 |
+
rcParams['figure.figsize'] = 12, 8
|
| 34 |
+
|
| 35 |
+
RANDOM_SEED = 42
|
| 36 |
+
np.random.seed(RANDOM_SEED)
|
| 37 |
+
torch.manual_seed(RANDOM_SEED)
|
| 38 |
+
|
| 39 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
!gdown --id 1S6qMioqPJjyBLpLVz4gmRTnJHnjitnuV
|
| 43 |
+
!gdown --id 1zdmewp7ayS4js4VtrJEHzAheSW-5NBZv
|
| 44 |
+
|
| 45 |
+
df = pd.read_csv("reviews.csv")
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
sns.countplot(x='score', data = df)
|
| 49 |
+
plt.xlabel('review score');
|
| 50 |
+
|
| 51 |
+
def to_sentiment(rating):
|
| 52 |
+
rating = int(rating)
|
| 53 |
+
if rating <= 2:
|
| 54 |
+
return 0
|
| 55 |
+
elif rating == 3:
|
| 56 |
+
return 1
|
| 57 |
+
else:
|
| 58 |
+
return 2
|
| 59 |
+
|
| 60 |
+
df['sentiment'] = df.score.apply(to_sentiment)
|
| 61 |
+
|
| 62 |
+
class_names = ['negative', 'neutral', 'positive']
|
| 63 |
+
|
| 64 |
+
print(df.sentiment)
|
| 65 |
+
|
| 66 |
+
ax = sns.countplot(x='sentiment', data = df)
|
| 67 |
+
plt.xlabel('review sentiment')
|
| 68 |
+
ax.set_xticklabels(class_names);
|
| 69 |
+
|
| 70 |
+
PRE_TRAINED_MODEL_NAME = 'bert-base-uncased'
|
| 71 |
+
|
| 72 |
+
tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
|
| 73 |
+
|
| 74 |
+
sample_txt = 'When was I last outside? I am stuck at home for 2 weeks.'
|
| 75 |
+
|
| 76 |
+
tokens = tokenizer.tokenize(sample_txt)
|
| 77 |
+
token_ids = tokenizer.convert_tokens_to_ids(tokens)
|
| 78 |
+
|
| 79 |
+
print(f' Sentence: {sample_txt}')
|
| 80 |
+
print(f' Tokens: {tokens}')
|
| 81 |
+
print(f'Token IDs: {token_ids}')
|
| 82 |
+
|
| 83 |
+
tokenizer.sep_token, tokenizer.sep_token_id
|
| 84 |
+
|
| 85 |
+
tokenizer.cls_token, tokenizer.cls_token_id
|
| 86 |
+
|
| 87 |
+
tokenizer.pad_token, tokenizer.pad_token_id
|
| 88 |
+
|
| 89 |
+
tokenizer.unk_token, tokenizer.unk_token_id
|
| 90 |
+
|
| 91 |
+
encoding = tokenizer.encode_plus(
|
| 92 |
+
sample_txt,
|
| 93 |
+
max_length=32,
|
| 94 |
+
add_special_tokens=True, # Add '[CLS]' and '[SEP]'
|
| 95 |
+
return_token_type_ids=False,
|
| 96 |
+
pad_to_max_length=True,
|
| 97 |
+
return_attention_mask=True,
|
| 98 |
+
return_tensors='pt', # Return PyTorch tensors
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
encoding.keys()
|
| 102 |
+
|
| 103 |
+
print(len(encoding['input_ids'][0]))
|
| 104 |
+
encoding['input_ids'][0]
|
| 105 |
+
|
| 106 |
+
print(len(encoding['attention_mask'][0]))
|
| 107 |
+
encoding['attention_mask']
|
| 108 |
+
|
| 109 |
+
tokenizer.convert_ids_to_tokens(encoding['input_ids'][0])
|
| 110 |
+
|
| 111 |
+
token_lens = []
|
| 112 |
+
|
| 113 |
+
for txt in df.content:
|
| 114 |
+
tokens = tokenizer.encode(txt, max_length=512)
|
| 115 |
+
token_lens.append(len(tokens))
|
| 116 |
+
|
| 117 |
+
sns.distplot(token_lens)
|
| 118 |
+
plt.xlim([0, 256]);
|
| 119 |
+
plt.xlabel('Token count');
|
| 120 |
+
|
| 121 |
+
MAX_LEN = 160
|
| 122 |
+
|
| 123 |
+
class GPReviewDataset(Dataset):
|
| 124 |
+
|
| 125 |
+
def __init__(self, reviews, targets, tokenizer, max_len):
|
| 126 |
+
self.reviews = reviews
|
| 127 |
+
self.targets = targets
|
| 128 |
+
self.tokenizer = tokenizer
|
| 129 |
+
self.max_len = max_len
|
| 130 |
+
|
| 131 |
+
def __len__(self):
|
| 132 |
+
return len(self.reviews)
|
| 133 |
+
|
| 134 |
+
def __getitem__(self, item):
|
| 135 |
+
review = str(self.reviews[item])
|
| 136 |
+
target = self.targets[item]
|
| 137 |
+
|
| 138 |
+
encoding = self.tokenizer.encode_plus(
|
| 139 |
+
review,
|
| 140 |
+
add_special_tokens=True,
|
| 141 |
+
max_length=self.max_len,
|
| 142 |
+
return_token_type_ids=False,
|
| 143 |
+
pad_to_max_length=True,
|
| 144 |
+
return_attention_mask=True,
|
| 145 |
+
return_tensors='pt',
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
return {
|
| 149 |
+
'review_text': review,
|
| 150 |
+
'input_ids': encoding['input_ids'].flatten(),
|
| 151 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
| 152 |
+
'targets': torch.tensor(target, dtype=torch.long)
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
df_train, df_test = train_test_split(df, test_size=0.1, random_state=RANDOM_SEED)
|
| 156 |
+
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)
|
| 157 |
+
|
| 158 |
+
df_train.shape, df_val.shape, df_test.shape
|
| 159 |
+
|
| 160 |
+
def create_data_loader(df, tokenizer, max_len, batch_size):
|
| 161 |
+
ds = GPReviewDataset(
|
| 162 |
+
reviews=df.content.to_numpy(),
|
| 163 |
+
targets=df.sentiment.to_numpy(),
|
| 164 |
+
tokenizer=tokenizer,
|
| 165 |
+
max_len=max_len
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
return DataLoader(
|
| 169 |
+
ds,
|
| 170 |
+
batch_size=batch_size,
|
| 171 |
+
num_workers=4
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
BATCH_SIZE = 16
|
| 175 |
+
|
| 176 |
+
train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE)
|
| 177 |
+
val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
|
| 178 |
+
test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)
|
| 179 |
+
|
| 180 |
+
data = next(iter(train_data_loader))
|
| 181 |
+
data.keys()
|
| 182 |
+
|
| 183 |
+
print(data['input_ids'].shape)
|
| 184 |
+
print(data['attention_mask'].shape)
|
| 185 |
+
print(data['targets'].shape)
|
| 186 |
+
|
| 187 |
+
bert_model = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)
|
| 188 |
+
|
| 189 |
+
last_hidden_state, pooled_output = bert_model(
|
| 190 |
+
input_ids=encoding['input_ids'],
|
| 191 |
+
attention_mask=encoding['attention_mask'],
|
| 192 |
+
return_dict = False
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
last_hidden_state.shape
|
| 196 |
+
|
| 197 |
+
bert_model.config.hidden_size
|
| 198 |
+
|
| 199 |
+
pooled_output.shape
|
| 200 |
+
|
| 201 |
+
class SentimentClassifier(nn.Module):
|
| 202 |
+
|
| 203 |
+
def __init__(self, n_classes):
|
| 204 |
+
super(SentimentClassifier, self).__init__()
|
| 205 |
+
self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)
|
| 206 |
+
self.drop = nn.Dropout(p=0.3)
|
| 207 |
+
self.out = nn.Linear(self.bert.config.hidden_size, n_classes)
|
| 208 |
+
|
| 209 |
+
def forward(self, input_ids, attention_mask):
|
| 210 |
+
returned = self.bert(
|
| 211 |
+
input_ids=input_ids,
|
| 212 |
+
attention_mask=attention_mask
|
| 213 |
+
)
|
| 214 |
+
pooled_output = returned["pooler_output"]
|
| 215 |
+
output = self.drop(pooled_output)
|
| 216 |
+
return self.out(output)
|
| 217 |
+
|
| 218 |
+
model = SentimentClassifier(len(class_names))
|
| 219 |
+
model = model.to(device)
|
| 220 |
+
|
| 221 |
+
input_ids = data['input_ids'].to(device)
|
| 222 |
+
attention_mask = data['attention_mask'].to(device)
|
| 223 |
+
|
| 224 |
+
print(input_ids.shape) # batch size x seq length
|
| 225 |
+
print(attention_mask.shape) # batch size x seq length
|
| 226 |
+
|
| 227 |
+
F.softmax(model(input_ids, attention_mask), dim=1)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
EPOCHS = 6
|
| 231 |
+
|
| 232 |
+
optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False)
|
| 233 |
+
total_steps = len(train_data_loader) * EPOCHS
|
| 234 |
+
|
| 235 |
+
scheduler = get_linear_schedule_with_warmup(
|
| 236 |
+
optimizer,
|
| 237 |
+
num_warmup_steps=0,
|
| 238 |
+
num_training_steps=total_steps
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
loss_fn = nn.CrossEntropyLoss().to(device)
|
| 242 |
+
|
| 243 |
+
def train_epoch(
|
| 244 |
+
model,
|
| 245 |
+
data_loader,
|
| 246 |
+
loss_fn,
|
| 247 |
+
optimizer,
|
| 248 |
+
device,
|
| 249 |
+
scheduler,
|
| 250 |
+
n_examples
|
| 251 |
+
):
|
| 252 |
+
model = model.train()
|
| 253 |
+
|
| 254 |
+
losses = []
|
| 255 |
+
correct_predictions = 0
|
| 256 |
+
|
| 257 |
+
for d in data_loader:
|
| 258 |
+
input_ids = d["input_ids"].to(device)
|
| 259 |
+
attention_mask = d["attention_mask"].to(device)
|
| 260 |
+
targets = d["targets"].to(device)
|
| 261 |
+
|
| 262 |
+
outputs = model(
|
| 263 |
+
input_ids=input_ids,
|
| 264 |
+
attention_mask=attention_mask
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
_, preds = torch.max(outputs, dim=1)
|
| 268 |
+
loss = loss_fn(outputs, targets)
|
| 269 |
+
|
| 270 |
+
correct_predictions += torch.sum(preds == targets)
|
| 271 |
+
losses.append(loss.item())
|
| 272 |
+
|
| 273 |
+
loss.backward()
|
| 274 |
+
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
| 275 |
+
optimizer.step()
|
| 276 |
+
scheduler.step()
|
| 277 |
+
optimizer.zero_grad()
|
| 278 |
+
|
| 279 |
+
return correct_predictions.double() / n_examples, np.mean(losses)
|
| 280 |
+
|
| 281 |
+
def eval_model(model, data_loader, loss_fn, device, n_examples):
|
| 282 |
+
model = model.eval()
|
| 283 |
+
|
| 284 |
+
losses = []
|
| 285 |
+
correct_predictions = 0
|
| 286 |
+
|
| 287 |
+
with torch.no_grad():
|
| 288 |
+
for d in data_loader:
|
| 289 |
+
input_ids = d["input_ids"].to(device)
|
| 290 |
+
attention_mask = d["attention_mask"].to(device)
|
| 291 |
+
targets = d["targets"].to(device)
|
| 292 |
+
|
| 293 |
+
outputs = model(
|
| 294 |
+
input_ids=input_ids,
|
| 295 |
+
attention_mask=attention_mask
|
| 296 |
+
)
|
| 297 |
+
_, preds = torch.max(outputs, dim=1)
|
| 298 |
+
|
| 299 |
+
loss = loss_fn(outputs, targets)
|
| 300 |
+
|
| 301 |
+
correct_predictions += torch.sum(preds == targets)
|
| 302 |
+
losses.append(loss.item())
|
| 303 |
+
|
| 304 |
+
return correct_predictions.double() / n_examples, np.mean(losses)
|
| 305 |
+
|
| 306 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 307 |
+
# %%time
|
| 308 |
+
#
|
| 309 |
+
# history = defaultdict(list)
|
| 310 |
+
# best_accuracy = 0
|
| 311 |
+
#
|
| 312 |
+
# for epoch in range(EPOCHS):
|
| 313 |
+
#
|
| 314 |
+
# print(f'Epoch {epoch + 1}/{EPOCHS}')
|
| 315 |
+
# print('-' * 10)
|
| 316 |
+
#
|
| 317 |
+
# train_acc, train_loss = train_epoch(
|
| 318 |
+
# model,
|
| 319 |
+
# train_data_loader,
|
| 320 |
+
# loss_fn,
|
| 321 |
+
# optimizer,
|
| 322 |
+
# device,
|
| 323 |
+
# scheduler,
|
| 324 |
+
# len(df_train)
|
| 325 |
+
# )
|
| 326 |
+
#
|
| 327 |
+
# print(f'Train loss {train_loss} accuracy {train_acc}')
|
| 328 |
+
#
|
| 329 |
+
# val_acc, val_loss = eval_model(
|
| 330 |
+
# model,
|
| 331 |
+
# val_data_loader,
|
| 332 |
+
# loss_fn,
|
| 333 |
+
# device,
|
| 334 |
+
# len(df_val)
|
| 335 |
+
# )
|
| 336 |
+
#
|
| 337 |
+
# print(f'Val loss {val_loss} accuracy {val_acc}')
|
| 338 |
+
# print()
|
| 339 |
+
#
|
| 340 |
+
# history['train_acc'].append(train_acc)
|
| 341 |
+
# history['train_loss'].append(train_loss)
|
| 342 |
+
# history['val_acc'].append(val_acc)
|
| 343 |
+
# history['val_loss'].append(val_loss)
|
| 344 |
+
#
|
| 345 |
+
# if val_acc > best_accuracy:
|
| 346 |
+
# torch.save(model.state_dict(), 'best_model_state.bin')
|
| 347 |
+
# best_accuracy = val_acc
|
| 348 |
+
|
| 349 |
+
print(history['train_acc'])
|
| 350 |
+
|
| 351 |
+
list_of_train_accuracy= [t.cpu().numpy() for t in history['train_acc']]
|
| 352 |
+
list_of_train_accuracy
|
| 353 |
+
|
| 354 |
+
print(history['val_acc'])
|
| 355 |
+
|
| 356 |
+
list_of_val_accuracy= [t.cpu().numpy() for t in history['val_acc']]
|
| 357 |
+
list_of_val_accuracy
|
| 358 |
+
|
| 359 |
+
plt.plot(list_of_train_accuracy, label='train accuracy')
|
| 360 |
+
plt.plot(list_of_val_accuracy, label='validation accuracy')
|
| 361 |
+
|
| 362 |
+
plt.title('Training history')
|
| 363 |
+
plt.ylabel('Accuracy')
|
| 364 |
+
plt.xlabel('Epoch')
|
| 365 |
+
plt.legend()
|
| 366 |
+
plt.ylim([0, 1]);
|
| 367 |
+
|
| 368 |
+
test_acc, _ = eval_model(
|
| 369 |
+
model,
|
| 370 |
+
test_data_loader,
|
| 371 |
+
loss_fn,
|
| 372 |
+
device,
|
| 373 |
+
len(df_test)
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
print(('\n'))
|
| 377 |
+
print('Test Accuracy : ', test_acc.item())
|
| 378 |
+
|
| 379 |
+
def get_predictions(model, data_loader):
|
| 380 |
+
model = model.eval()
|
| 381 |
+
|
| 382 |
+
review_texts = []
|
| 383 |
+
predictions = []
|
| 384 |
+
prediction_probs = []
|
| 385 |
+
real_values = []
|
| 386 |
+
|
| 387 |
+
with torch.no_grad():
|
| 388 |
+
for d in data_loader:
|
| 389 |
+
|
| 390 |
+
texts = d["review_text"]
|
| 391 |
+
input_ids = d["input_ids"].to(device)
|
| 392 |
+
attention_mask = d["attention_mask"].to(device)
|
| 393 |
+
targets = d["targets"].to(device)
|
| 394 |
+
|
| 395 |
+
outputs = model(
|
| 396 |
+
input_ids=input_ids,
|
| 397 |
+
attention_mask=attention_mask
|
| 398 |
+
)
|
| 399 |
+
_, preds = torch.max(outputs, dim=1)
|
| 400 |
+
|
| 401 |
+
probs = F.softmax(outputs, dim=1)
|
| 402 |
+
|
| 403 |
+
review_texts.extend(texts)
|
| 404 |
+
predictions.extend(preds)
|
| 405 |
+
prediction_probs.extend(probs)
|
| 406 |
+
real_values.extend(targets)
|
| 407 |
+
|
| 408 |
+
predictions = torch.stack(predictions).cpu()
|
| 409 |
+
prediction_probs = torch.stack(prediction_probs).cpu()
|
| 410 |
+
real_values = torch.stack(real_values).cpu()
|
| 411 |
+
return review_texts, predictions, prediction_probs, real_values
|
| 412 |
+
|
| 413 |
+
y_review_texts, y_pred, y_pred_probs, y_test = get_predictions(
|
| 414 |
+
model,
|
| 415 |
+
test_data_loader
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
print(classification_report(y_test, y_pred, target_names=class_names))
|
| 419 |
+
|
| 420 |
+
def show_confusion_matrix(confusion_matrix):
|
| 421 |
+
hmap = sns.heatmap(confusion_matrix, annot=True, fmt="d", cmap="Blues")
|
| 422 |
+
hmap.yaxis.set_ticklabels(hmap.yaxis.get_ticklabels(), rotation=0, ha='right')
|
| 423 |
+
hmap.xaxis.set_ticklabels(hmap.xaxis.get_ticklabels(), rotation=30, ha='right')
|
| 424 |
+
plt.ylabel('True sentiment')
|
| 425 |
+
plt.xlabel('Predicted sentiment');
|
| 426 |
+
|
| 427 |
+
cm = confusion_matrix(y_test, y_pred)
|
| 428 |
+
df_cm = pd.DataFrame(cm, index=class_names, columns=class_names)
|
| 429 |
+
show_confusion_matrix(df_cm)
|
| 430 |
+
|
| 431 |
+
idx = 2
|
| 432 |
+
|
| 433 |
+
review_text = y_review_texts[idx]
|
| 434 |
+
true_sentiment = y_test[idx]
|
| 435 |
+
pred_df = pd.DataFrame({
|
| 436 |
+
'class_names': class_names,
|
| 437 |
+
'values': y_pred_probs[idx]
|
| 438 |
+
})
|
| 439 |
+
|
| 440 |
+
print("\n".join(wrap(review_text)))
|
| 441 |
+
print()
|
| 442 |
+
print(f'True sentiment: {class_names[true_sentiment]}')
|
| 443 |
+
|
| 444 |
+
sns.barplot(x='values', y='class_names', data=pred_df, orient='h')
|
| 445 |
+
plt.ylabel('sentiment')
|
| 446 |
+
plt.xlabel('probability')
|
| 447 |
+
plt.xlim([0, 1]);
|
| 448 |
+
|
| 449 |
+
review_text = input("Enter a comment for sentiment analysis: ")
|
| 450 |
+
|
| 451 |
+
encoded_review = tokenizer.encode_plus(
|
| 452 |
+
review_text,
|
| 453 |
+
max_length=MAX_LEN,
|
| 454 |
+
add_special_tokens=True,
|
| 455 |
+
return_token_type_ids=False,
|
| 456 |
+
pad_to_max_length=True,
|
| 457 |
+
return_attention_mask=True,
|
| 458 |
+
return_tensors='pt',
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
input_ids = encoded_review['input_ids'].to(device)
|
| 462 |
+
attention_mask = encoded_review['attention_mask'].to(device)
|
| 463 |
+
|
| 464 |
+
output = model(input_ids, attention_mask)
|
| 465 |
+
_, prediction = torch.max(output, dim=1)
|
| 466 |
+
|
| 467 |
+
print(f'Review text: {review_text}')
|
| 468 |
+
print(f'Sentiment : {class_names[prediction]}')
|
| 469 |
+
|
| 470 |
+
def suggest_improved_text(review_text, model, tokenizer):
|
| 471 |
+
# Analyse du sentiment du texte d'origine
|
| 472 |
+
sentiment = analyze_sentiment(review_text, model, tokenizer)
|
| 473 |
+
|
| 474 |
+
# Si le sentiment est négatif ou neutre, générer une version améliorée plus positive
|
| 475 |
+
if sentiment in ['negative', 'neutral']:
|
| 476 |
+
# Prétraitement du texte
|
| 477 |
+
encoded_input = tokenizer.encode_plus(
|
| 478 |
+
review_text,
|
| 479 |
+
max_length=MAX_LEN,
|
| 480 |
+
add_special_tokens=True,
|
| 481 |
+
return_token_type_ids=False,
|
| 482 |
+
pad_to_max_length=True,
|
| 483 |
+
return_attention_mask=True,
|
| 484 |
+
return_tensors='pt'
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
input_ids = encoded_input['input_ids'].to(device)
|
| 488 |
+
attention_mask = encoded_input['attention_mask'].to(device)
|
| 489 |
+
outputs = model(input_ids, attention_mask)
|
| 490 |
+
_, predicted_sentiment = torch.max(outputs, dim=1)
|
| 491 |
+
|
| 492 |
+
improved_text = generate_improved_text(text, predicted_sentiment)
|
| 493 |
+
|
| 494 |
+
return improved_text
|
| 495 |
+
|
| 496 |
+
return review_text
|
| 497 |
+
|
| 498 |
+
def analyze_sentiment(review_text, model, tokenizer):
|
| 499 |
+
encoded_input = tokenizer.encode_plus(
|
| 500 |
+
review_text,
|
| 501 |
+
max_length=MAX_LEN,
|
| 502 |
+
add_special_tokens=True,
|
| 503 |
+
return_token_type_ids=False,
|
| 504 |
+
pad_to_max_length=True,
|
| 505 |
+
return_attention_mask=True,
|
| 506 |
+
return_tensors='pt'
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
input_ids = encoded_input['input_ids'].to(device)
|
| 510 |
+
attention_mask = encoded_input['attention_mask'].to(device)
|
| 511 |
+
outputs = model(input_ids, attention_mask)
|
| 512 |
+
_, predicted_sentiment = torch.max(outputs, dim=1)
|
| 513 |
+
|
| 514 |
+
return class_names[predicted_sentiment]
|
| 515 |
+
def generate_improved_text(review_text, predicted_sentiment):
|
| 516 |
+
positive_words = ["marvellous", "fantastic", "excellent", "admirable", "formidable"]
|
| 517 |
+
|
| 518 |
+
if predicted_sentiment == 0:
|
| 519 |
+
improved_text = review_text + " " + " ".join(positive_words)
|
| 520 |
+
else:
|
| 521 |
+
improved_text = review_text
|
| 522 |
+
|
| 523 |
+
return improved_text
|