Commit
·
6162fcf
1
Parent(s):
8d6722d
Upload sentiment_analysis.py
Browse files- sentiment_analysis.py +602 -0
sentiment_analysis.py
ADDED
|
@@ -0,0 +1,602 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Sentiment_analysis.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1EHgMQQJzwbNja0JVMM2DVvrVTMHIS3Vg
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install transformers
|
| 11 |
+
|
| 12 |
+
import pandas as pd
|
| 13 |
+
from wordcloud import WordCloud
|
| 14 |
+
import seaborn as sns
|
| 15 |
+
import re
|
| 16 |
+
import string
|
| 17 |
+
from collections import Counter, defaultdict
|
| 18 |
+
|
| 19 |
+
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
|
| 20 |
+
|
| 21 |
+
import plotly.express as px
|
| 22 |
+
from plotly.subplots import make_subplots
|
| 23 |
+
import plotly.graph_objects as go
|
| 24 |
+
from plotly.offline import plot
|
| 25 |
+
|
| 26 |
+
import matplotlib.gridspec as gridspec
|
| 27 |
+
from matplotlib.ticker import MaxNLocator
|
| 28 |
+
import matplotlib.patches as mpatches
|
| 29 |
+
import matplotlib.pyplot as plt
|
| 30 |
+
import warnings
|
| 31 |
+
warnings.filterwarnings('ignore')
|
| 32 |
+
import nltk
|
| 33 |
+
nltk.download('stopwords')
|
| 34 |
+
from nltk.corpus import stopwords
|
| 35 |
+
stopWords_nltk = set(stopwords.words('english'))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
import re
|
| 39 |
+
from typing import Union, List
|
| 40 |
+
|
| 41 |
+
class CleanText():
|
| 42 |
+
""" clearing text except digits () . , word character """
|
| 43 |
+
|
| 44 |
+
def __init__(self, clean_pattern = r"[^A-ZĞÜŞİÖÇIa-zğüı'şöç0-9.\"',()]"):
|
| 45 |
+
self.clean_pattern =clean_pattern
|
| 46 |
+
|
| 47 |
+
def __call__(self, text: Union[str, list]) -> str:
|
| 48 |
+
|
| 49 |
+
if isinstance(text, str):
|
| 50 |
+
docs = [[text]]
|
| 51 |
+
|
| 52 |
+
if isinstance(text, list):
|
| 53 |
+
docs = text
|
| 54 |
+
|
| 55 |
+
text = [[re.sub(self.clean_pattern, " ", sent) for sent in sents] for sents in docs]
|
| 56 |
+
|
| 57 |
+
# Join the list of lists into a single string
|
| 58 |
+
text = ' '.join([' '.join(sents) for sents in text])
|
| 59 |
+
|
| 60 |
+
return text
|
| 61 |
+
|
| 62 |
+
def remove_emoji(data):
|
| 63 |
+
emoj = re.compile("["
|
| 64 |
+
u"\U0001F600-\U0001F64F" # emoticons
|
| 65 |
+
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
| 66 |
+
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
| 67 |
+
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
|
| 68 |
+
u"\U00002500-\U00002BEF"
|
| 69 |
+
u"\U00002702-\U000027B0"
|
| 70 |
+
u"\U00002702-\U000027B0"
|
| 71 |
+
u"\U000024C2-\U0001F251"
|
| 72 |
+
u"\U0001f926-\U0001f937"
|
| 73 |
+
u"\U00010000-\U0010ffff"
|
| 74 |
+
u"\u2640-\u2642"
|
| 75 |
+
u"\u2600-\u2B55"
|
| 76 |
+
u"\u200d"
|
| 77 |
+
u"\u23cf"
|
| 78 |
+
u"\u23e9"
|
| 79 |
+
u"\u231a"
|
| 80 |
+
u"\ufe0f" # dingbats
|
| 81 |
+
u"\u3030"
|
| 82 |
+
"]+", re.UNICODE)
|
| 83 |
+
return re.sub(emoj, '', data)
|
| 84 |
+
|
| 85 |
+
def tokenize(text):
|
| 86 |
+
""" basic tokenize method with word character, non word character and digits """
|
| 87 |
+
text = re.sub(r" +", " ", str(text))
|
| 88 |
+
text = re.split(r"(\d+|[a-zA-ZğüşıöçĞÜŞİÖÇ]+|\W)", text)
|
| 89 |
+
text = list(filter(lambda x: x != '' and x != ' ', text))
|
| 90 |
+
sent_tokenized = ' '.join(text)
|
| 91 |
+
return sent_tokenized
|
| 92 |
+
|
| 93 |
+
regex = re.compile('[%s]' % re.escape(string.punctuation))
|
| 94 |
+
|
| 95 |
+
def remove_punct(text):
|
| 96 |
+
text = regex.sub(" ", text)
|
| 97 |
+
return text
|
| 98 |
+
|
| 99 |
+
clean = CleanText()
|
| 100 |
+
|
| 101 |
+
def label_encode(x):
|
| 102 |
+
if x == 1 or x == 2:
|
| 103 |
+
return 0
|
| 104 |
+
if x == 3:
|
| 105 |
+
return 1
|
| 106 |
+
if x == 5 or x == 4:
|
| 107 |
+
return 2
|
| 108 |
+
|
| 109 |
+
def label2name(x):
|
| 110 |
+
if x == 0:
|
| 111 |
+
return "Negative"
|
| 112 |
+
if x == 1:
|
| 113 |
+
return "Neutral"
|
| 114 |
+
if x == 2:
|
| 115 |
+
return "Positive"
|
| 116 |
+
|
| 117 |
+
from google.colab import files
|
| 118 |
+
uploaded = files.upload()
|
| 119 |
+
df = pd.read_csv('tripadvisor_hotel_reviews.csv')
|
| 120 |
+
|
| 121 |
+
print("df.columns: ", df.columns)
|
| 122 |
+
|
| 123 |
+
fig = px.histogram(df,
|
| 124 |
+
x = 'Rating',
|
| 125 |
+
title = 'Histogram of Review Rating',
|
| 126 |
+
template = 'ggplot2',
|
| 127 |
+
color = 'Rating',
|
| 128 |
+
color_discrete_sequence= px.colors.sequential.Blues_r,
|
| 129 |
+
opacity = 0.8,
|
| 130 |
+
height = 525,
|
| 131 |
+
width = 835,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
fig.update_yaxes(title='Count')
|
| 135 |
+
fig.show()
|
| 136 |
+
|
| 137 |
+
df.info()
|
| 138 |
+
|
| 139 |
+
df["label"] = df["Rating"].apply(lambda x: label_encode(x))
|
| 140 |
+
df["label_name"] = df["label"].apply(lambda x: label2name(x))
|
| 141 |
+
|
| 142 |
+
df["Review"] = df["Review"].apply(lambda x: remove_punct(clean(remove_emoji(x).lower())[0][0]))
|
| 143 |
+
|
| 144 |
+
df.head()
|
| 145 |
+
|
| 146 |
+
fig = make_subplots(rows=1, cols=2, specs=[[{"type": "pie"}, {"type": "bar"}]])
|
| 147 |
+
colors = ['gold', 'mediumturquoise', 'lightgreen'] # darkorange
|
| 148 |
+
fig.add_trace(go.Pie(labels=df.label_name.value_counts().index,
|
| 149 |
+
values=df.label.value_counts().values), 1, 1)
|
| 150 |
+
|
| 151 |
+
fig.update_traces(hoverinfo='label+percent', textfont_size=20,
|
| 152 |
+
marker=dict(colors=colors, line=dict(color='#000000', width=2)))
|
| 153 |
+
|
| 154 |
+
fig.add_trace(go.Bar(x=df.label_name.value_counts().index, y=df.label.value_counts().values, marker_color = colors), 1,2)
|
| 155 |
+
|
| 156 |
+
fig.show()
|
| 157 |
+
|
| 158 |
+
import pandas as pd
|
| 159 |
+
import numpy as np
|
| 160 |
+
import os
|
| 161 |
+
import random
|
| 162 |
+
from pathlib import Path
|
| 163 |
+
import json
|
| 164 |
+
|
| 165 |
+
import torch
|
| 166 |
+
from tqdm.notebook import tqdm
|
| 167 |
+
|
| 168 |
+
from transformers import BertTokenizer
|
| 169 |
+
from torch.utils.data import TensorDataset
|
| 170 |
+
|
| 171 |
+
from transformers import BertForSequenceClassification
|
| 172 |
+
|
| 173 |
+
class Config():
|
| 174 |
+
seed_val = 17
|
| 175 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 176 |
+
epochs = 5
|
| 177 |
+
batch_size = 6
|
| 178 |
+
seq_length = 512
|
| 179 |
+
lr = 2e-5
|
| 180 |
+
eps = 1e-8
|
| 181 |
+
pretrained_model = 'bert-base-uncased'
|
| 182 |
+
test_size=0.15
|
| 183 |
+
random_state=42
|
| 184 |
+
add_special_tokens=True
|
| 185 |
+
return_attention_mask=True
|
| 186 |
+
pad_to_max_length=True
|
| 187 |
+
do_lower_case=False
|
| 188 |
+
return_tensors='pt'
|
| 189 |
+
config = Config()
|
| 190 |
+
|
| 191 |
+
# params will be saved after training
|
| 192 |
+
params = {"seed_val": config.seed_val,
|
| 193 |
+
"device":str(config.device),
|
| 194 |
+
"epochs":config.epochs,
|
| 195 |
+
"batch_size":config.batch_size,
|
| 196 |
+
"seq_length":config.seq_length,
|
| 197 |
+
"lr":config.lr,
|
| 198 |
+
"eps":config.eps,
|
| 199 |
+
"pretrained_model": config.pretrained_model,
|
| 200 |
+
"test_size":config.test_size,
|
| 201 |
+
"random_state":config.random_state,
|
| 202 |
+
"add_special_tokens":config.add_special_tokens,
|
| 203 |
+
"return_attention_mask":config.return_attention_mask,
|
| 204 |
+
"pad_to_max_length":config.pad_to_max_length,
|
| 205 |
+
"do_lower_case":config.do_lower_case,
|
| 206 |
+
"return_tensors":config.return_tensors,
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
import random
|
| 210 |
+
|
| 211 |
+
device = config.device
|
| 212 |
+
|
| 213 |
+
random.seed(config.seed_val)
|
| 214 |
+
np.random.seed(config.seed_val)
|
| 215 |
+
torch.manual_seed(config.seed_val)
|
| 216 |
+
torch.cuda.manual_seed_all(config.seed_val)
|
| 217 |
+
|
| 218 |
+
df.head()
|
| 219 |
+
|
| 220 |
+
from sklearn.model_selection import train_test_split
|
| 221 |
+
|
| 222 |
+
train_df_, val_df = train_test_split(df,
|
| 223 |
+
test_size=0.10,
|
| 224 |
+
random_state=config.random_state,
|
| 225 |
+
stratify=df.label.values)
|
| 226 |
+
|
| 227 |
+
train_df_.head()
|
| 228 |
+
|
| 229 |
+
train_df, test_df = train_test_split(train_df_,
|
| 230 |
+
test_size=0.10,
|
| 231 |
+
random_state=42,
|
| 232 |
+
stratify=train_df_.label.values)
|
| 233 |
+
|
| 234 |
+
print(len(train_df['label'].unique()))
|
| 235 |
+
print(train_df.shape)
|
| 236 |
+
|
| 237 |
+
print(len(val_df['label'].unique()))
|
| 238 |
+
print(val_df.shape)
|
| 239 |
+
|
| 240 |
+
print(len(test_df['label'].unique()))
|
| 241 |
+
print(test_df.shape)
|
| 242 |
+
|
| 243 |
+
tokenizer = BertTokenizer.from_pretrained(config.pretrained_model,
|
| 244 |
+
do_lower_case=config.do_lower_case)
|
| 245 |
+
|
| 246 |
+
encoded_data_train = tokenizer.batch_encode_plus(
|
| 247 |
+
train_df.Review.values,
|
| 248 |
+
add_special_tokens=config.add_special_tokens,
|
| 249 |
+
return_attention_mask=config.return_attention_mask,
|
| 250 |
+
pad_to_max_length=config.pad_to_max_length,
|
| 251 |
+
max_length=config.seq_length,
|
| 252 |
+
return_tensors=config.return_tensors
|
| 253 |
+
)
|
| 254 |
+
encoded_data_val = tokenizer.batch_encode_plus(
|
| 255 |
+
val_df.Review.values,
|
| 256 |
+
add_special_tokens=config.add_special_tokens,
|
| 257 |
+
return_attention_mask=config.return_attention_mask,
|
| 258 |
+
pad_to_max_length=config.pad_to_max_length,
|
| 259 |
+
max_length=config.seq_length,
|
| 260 |
+
return_tensors=config.return_tensors
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
input_ids_train = encoded_data_train['input_ids']
|
| 264 |
+
attention_masks_train = encoded_data_train['attention_mask']
|
| 265 |
+
labels_train = torch.tensor(train_df.label.values)
|
| 266 |
+
|
| 267 |
+
input_ids_val = encoded_data_val['input_ids']
|
| 268 |
+
attention_masks_val = encoded_data_val['attention_mask']
|
| 269 |
+
labels_val = torch.tensor(val_df.label.values)
|
| 270 |
+
|
| 271 |
+
dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train)
|
| 272 |
+
dataset_val = TensorDataset(input_ids_val, attention_masks_val, labels_val)
|
| 273 |
+
|
| 274 |
+
model = BertForSequenceClassification.from_pretrained(config.pretrained_model,
|
| 275 |
+
num_labels=3,
|
| 276 |
+
output_attentions=False,
|
| 277 |
+
output_hidden_states=False)
|
| 278 |
+
|
| 279 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
| 280 |
+
|
| 281 |
+
dataloader_train = DataLoader(dataset_train,
|
| 282 |
+
sampler=RandomSampler(dataset_train),
|
| 283 |
+
batch_size=config.batch_size)
|
| 284 |
+
|
| 285 |
+
dataloader_validation = DataLoader(dataset_val,
|
| 286 |
+
sampler=SequentialSampler(dataset_val),
|
| 287 |
+
batch_size=config.batch_size)
|
| 288 |
+
|
| 289 |
+
from transformers import AdamW, get_linear_schedule_with_warmup
|
| 290 |
+
|
| 291 |
+
optimizer = AdamW(model.parameters(),
|
| 292 |
+
lr=config.lr,
|
| 293 |
+
eps=config.eps)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
scheduler = get_linear_schedule_with_warmup(optimizer,
|
| 297 |
+
num_warmup_steps=0,
|
| 298 |
+
num_training_steps=len(dataloader_train)*config.epochs)
|
| 299 |
+
|
| 300 |
+
from sklearn.metrics import f1_score
|
| 301 |
+
|
| 302 |
+
def f1_score_func(preds, labels):
|
| 303 |
+
preds_flat = np.argmax(preds, axis=1).flatten()
|
| 304 |
+
labels_flat = labels.flatten()
|
| 305 |
+
return f1_score(labels_flat, preds_flat, average='weighted')
|
| 306 |
+
|
| 307 |
+
def accuracy_per_class(preds, labels, label_dict):
|
| 308 |
+
label_dict_inverse = {v: k for k, v in label_dict.items()}
|
| 309 |
+
|
| 310 |
+
preds_flat = np.argmax(preds, axis=1).flatten()
|
| 311 |
+
labels_flat = labels.flatten()
|
| 312 |
+
|
| 313 |
+
for label in np.unique(labels_flat):
|
| 314 |
+
y_preds = preds_flat[labels_flat==label]
|
| 315 |
+
y_true = labels_flat[labels_flat==label]
|
| 316 |
+
print(f'Class: {label_dict_inverse[label]}')
|
| 317 |
+
print(f'Accuracy: {len(y_preds[y_preds==label])}/{len(y_true)}\n')
|
| 318 |
+
|
| 319 |
+
def evaluate(dataloader_val):
|
| 320 |
+
|
| 321 |
+
model.eval()
|
| 322 |
+
|
| 323 |
+
loss_val_total = 0
|
| 324 |
+
predictions, true_vals = [], []
|
| 325 |
+
|
| 326 |
+
for batch in dataloader_val:
|
| 327 |
+
|
| 328 |
+
batch = tuple(b.to(config.device) for b in batch)
|
| 329 |
+
|
| 330 |
+
inputs = {'input_ids': batch[0],
|
| 331 |
+
'attention_mask': batch[1],
|
| 332 |
+
'labels': batch[2],
|
| 333 |
+
}
|
| 334 |
+
|
| 335 |
+
with torch.no_grad():
|
| 336 |
+
outputs = model(**inputs)
|
| 337 |
+
|
| 338 |
+
loss = outputs[0]
|
| 339 |
+
logits = outputs[1]
|
| 340 |
+
loss_val_total += loss.item()
|
| 341 |
+
|
| 342 |
+
logits = logits.detach().cpu().numpy()
|
| 343 |
+
label_ids = inputs['labels'].cpu().numpy()
|
| 344 |
+
predictions.append(logits)
|
| 345 |
+
true_vals.append(label_ids)
|
| 346 |
+
|
| 347 |
+
# calculate avareage val loss
|
| 348 |
+
loss_val_avg = loss_val_total/len(dataloader_val)
|
| 349 |
+
|
| 350 |
+
predictions = np.concatenate(predictions, axis=0)
|
| 351 |
+
true_vals = np.concatenate(true_vals, axis=0)
|
| 352 |
+
|
| 353 |
+
return loss_val_avg, predictions, true_vals
|
| 354 |
+
|
| 355 |
+
config.device
|
| 356 |
+
|
| 357 |
+
model.to(config.device)
|
| 358 |
+
|
| 359 |
+
for epoch in tqdm(range(1, config.epochs+1)):
|
| 360 |
+
|
| 361 |
+
model.train()
|
| 362 |
+
|
| 363 |
+
loss_train_total = 0
|
| 364 |
+
# allows you to see the progress of the training
|
| 365 |
+
progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False)
|
| 366 |
+
|
| 367 |
+
for batch in progress_bar:
|
| 368 |
+
|
| 369 |
+
model.zero_grad()
|
| 370 |
+
|
| 371 |
+
batch = tuple(b.to(config.device) for b in batch)
|
| 372 |
+
|
| 373 |
+
inputs = {'input_ids': batch[0],
|
| 374 |
+
'attention_mask': batch[1],
|
| 375 |
+
'labels': batch[2],
|
| 376 |
+
}
|
| 377 |
+
|
| 378 |
+
outputs = model(**inputs)
|
| 379 |
+
|
| 380 |
+
loss = outputs[0]
|
| 381 |
+
loss_train_total += loss.item()
|
| 382 |
+
loss.backward()
|
| 383 |
+
|
| 384 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
| 385 |
+
|
| 386 |
+
optimizer.step()
|
| 387 |
+
scheduler.step()
|
| 388 |
+
progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))})
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
torch.save(model.state_dict(), f'_BERT_epoch_{epoch}.model')
|
| 392 |
+
|
| 393 |
+
tqdm.write(f'\nEpoch {epoch}')
|
| 394 |
+
|
| 395 |
+
loss_train_avg = loss_train_total/len(dataloader_train)
|
| 396 |
+
tqdm.write(f'Training loss: {loss_train_avg}')
|
| 397 |
+
|
| 398 |
+
val_loss, predictions, true_vals = evaluate(dataloader_validation)
|
| 399 |
+
val_f1 = f1_score_func(predictions, true_vals)
|
| 400 |
+
tqdm.write(f'Validation loss: {val_loss}')
|
| 401 |
+
|
| 402 |
+
tqdm.write(f'F1 Score (Weighted): {val_f1}');
|
| 403 |
+
# save model params and other configs
|
| 404 |
+
with Path('params.json').open("w") as f:
|
| 405 |
+
json.dump(params, f, ensure_ascii=False, indent=4)
|
| 406 |
+
|
| 407 |
+
model.load_state_dict(torch.load(f'./_BERT_epoch_3.model', map_location=torch.device('cpu')))
|
| 408 |
+
|
| 409 |
+
from sklearn.metrics import classification_report
|
| 410 |
+
|
| 411 |
+
preds_flat = np.argmax(predictions, axis=1).flatten()
|
| 412 |
+
print(classification_report(preds_flat, true_vals))
|
| 413 |
+
|
| 414 |
+
pred_final = []
|
| 415 |
+
|
| 416 |
+
for i, row in tqdm(val_df.iterrows(), total=val_df.shape[0]):
|
| 417 |
+
predictions = []
|
| 418 |
+
|
| 419 |
+
review = row["Review"]
|
| 420 |
+
encoded_data_test_single = tokenizer.batch_encode_plus(
|
| 421 |
+
[review],
|
| 422 |
+
add_special_tokens=config.add_special_tokens,
|
| 423 |
+
return_attention_mask=config.return_attention_mask,
|
| 424 |
+
pad_to_max_length=config.pad_to_max_length,
|
| 425 |
+
max_length=config.seq_length,
|
| 426 |
+
return_tensors=config.return_tensors
|
| 427 |
+
)
|
| 428 |
+
input_ids_test = encoded_data_test_single['input_ids']
|
| 429 |
+
attention_masks_test = encoded_data_test_single['attention_mask']
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
inputs = {'input_ids': input_ids_test.to(device),
|
| 433 |
+
'attention_mask':attention_masks_test.to(device),
|
| 434 |
+
}
|
| 435 |
+
|
| 436 |
+
with torch.no_grad():
|
| 437 |
+
outputs = model(**inputs)
|
| 438 |
+
|
| 439 |
+
logits = outputs[0]
|
| 440 |
+
logits = logits.detach().cpu().numpy()
|
| 441 |
+
predictions.append(logits)
|
| 442 |
+
predictions = np.concatenate(predictions, axis=0)
|
| 443 |
+
pred_final.append(np.argmax(predictions, axis=1).flatten()[0])
|
| 444 |
+
|
| 445 |
+
val_df["pred"] = pred_final
|
| 446 |
+
# Add control column for easier wrong and right predictions
|
| 447 |
+
control = val_df.pred.values == val_df.label.values
|
| 448 |
+
val_df["control"] = control
|
| 449 |
+
# filtering false predictions
|
| 450 |
+
val_df = val_df[val_df.control == False]
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
name2label = {"Negative":0,
|
| 455 |
+
"Neutral":1,
|
| 456 |
+
"Positive":2
|
| 457 |
+
}
|
| 458 |
+
label2name = {v: k for k, v in name2label.items()}
|
| 459 |
+
|
| 460 |
+
val_df["pred_name"] = val_df.pred.apply(lambda x: label2name.get(x))
|
| 461 |
+
from sklearn.metrics import confusion_matrix
|
| 462 |
+
|
| 463 |
+
# We create a confusion matrix to better observe the classes that the model confuses.
|
| 464 |
+
pred_name_values = val_df.pred_name.values
|
| 465 |
+
label_values = val_df.label_name.values
|
| 466 |
+
confmat = confusion_matrix(label_values, pred_name_values, labels=list(name2label.keys()))
|
| 467 |
+
|
| 468 |
+
confmat
|
| 469 |
+
|
| 470 |
+
df_confusion_val = pd.crosstab(label_values, pred_name_values)
|
| 471 |
+
df_confusion_val
|
| 472 |
+
|
| 473 |
+
df_confusion_val.to_csv("val_df_confusion.csv")
|
| 474 |
+
|
| 475 |
+
test_df.head()
|
| 476 |
+
|
| 477 |
+
encoded_data_test = tokenizer.batch_encode_plus(
|
| 478 |
+
test_df.Review.values,
|
| 479 |
+
add_special_tokens=config.add_special_tokens,
|
| 480 |
+
return_attention_mask=config.return_attention_mask,
|
| 481 |
+
pad_to_max_length=config.pad_to_max_length,
|
| 482 |
+
max_length=config.seq_length,
|
| 483 |
+
return_tensors=config.return_tensors
|
| 484 |
+
)
|
| 485 |
+
input_ids_test = encoded_data_test['input_ids']
|
| 486 |
+
attention_masks_test = encoded_data_test['attention_mask']
|
| 487 |
+
labels_test = torch.tensor(test_df.label.values)
|
| 488 |
+
|
| 489 |
+
model = BertForSequenceClassification.from_pretrained(config.pretrained_model,
|
| 490 |
+
num_labels=3,
|
| 491 |
+
output_attentions=False,
|
| 492 |
+
output_hidden_states=False)
|
| 493 |
+
|
| 494 |
+
model.to(config.device)
|
| 495 |
+
|
| 496 |
+
model.load_state_dict(torch.load(f'./_BERT_epoch_3.model', map_location=torch.device('cpu')))
|
| 497 |
+
|
| 498 |
+
_, predictions_test, true_vals_test = evaluate(dataloader_validation)
|
| 499 |
+
# accuracy_per_class(predictions, true_vals, intent2label)
|
| 500 |
+
|
| 501 |
+
def predict_sentiment(text):
|
| 502 |
+
# Prétraitement du texte
|
| 503 |
+
encoded_text = tokenizer.encode_plus(
|
| 504 |
+
text,
|
| 505 |
+
add_special_tokens=config.add_special_tokens,
|
| 506 |
+
return_attention_mask=config.return_attention_mask,
|
| 507 |
+
pad_to_max_length=config.pad_to_max_length,
|
| 508 |
+
max_length=config.seq_length,
|
| 509 |
+
return_tensors=config.return_tensors
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
# Convertir les entrées en tenseurs et les déplacer vers le bon appareil
|
| 513 |
+
input_ids = encoded_text['input_ids'].to(config.device)
|
| 514 |
+
attention_mask = encoded_text['attention_mask'].to(config.device)
|
| 515 |
+
|
| 516 |
+
# Mettre le modèle en mode d'évaluation et obtenir les prédictions
|
| 517 |
+
model.eval()
|
| 518 |
+
with torch.no_grad():
|
| 519 |
+
outputs = model(input_ids, attention_mask)
|
| 520 |
+
|
| 521 |
+
# Obtenir la prédiction du modèle
|
| 522 |
+
logits = outputs[0]
|
| 523 |
+
logits = logits.detach().cpu().numpy()
|
| 524 |
+
|
| 525 |
+
# Extraire la classe avec la probabilité la plus élevée
|
| 526 |
+
pred = np.argmax(logits, axis=1).flatten()[0]
|
| 527 |
+
|
| 528 |
+
# Convertir le label numérique en son nom correspondant
|
| 529 |
+
pred_name = label2name.get(pred)
|
| 530 |
+
|
| 531 |
+
return pred_name
|
| 532 |
+
|
| 533 |
+
text = "Your text here"
|
| 534 |
+
prediction = predict_sentiment(text)
|
| 535 |
+
print(f"The sentiment of the text is: {prediction}")
|
| 536 |
+
|
| 537 |
+
from sklearn.metrics import classification_report
|
| 538 |
+
|
| 539 |
+
preds_flat_test = np.argmax(predictions_test, axis=1).flatten()
|
| 540 |
+
print(classification_report(preds_flat_test, true_vals_test))
|
| 541 |
+
|
| 542 |
+
pred_final = []
|
| 543 |
+
|
| 544 |
+
for i, row in tqdm(test_df.iterrows(), total=test_df.shape[0]):
|
| 545 |
+
predictions = []
|
| 546 |
+
|
| 547 |
+
review = row["Review"]
|
| 548 |
+
encoded_data_test_single = tokenizer.batch_encode_plus(
|
| 549 |
+
[review],
|
| 550 |
+
add_special_tokens=config.add_special_tokens,
|
| 551 |
+
return_attention_mask=config.return_attention_mask,
|
| 552 |
+
pad_to_max_length=config.pad_to_max_length,
|
| 553 |
+
max_length=config.seq_length,
|
| 554 |
+
return_tensors=config.return_tensors
|
| 555 |
+
)
|
| 556 |
+
input_ids_test = encoded_data_test_single['input_ids']
|
| 557 |
+
attention_masks_test = encoded_data_test_single['attention_mask']
|
| 558 |
+
|
| 559 |
+
inputs = {'input_ids': input_ids_test.to(device),
|
| 560 |
+
'attention_mask':attention_masks_test.to(device),
|
| 561 |
+
}
|
| 562 |
+
|
| 563 |
+
with torch.no_grad():
|
| 564 |
+
outputs = model(**inputs)
|
| 565 |
+
|
| 566 |
+
logits = outputs[0]
|
| 567 |
+
logits = logits.detach().cpu().numpy()
|
| 568 |
+
predictions.append(logits)
|
| 569 |
+
predictions = np.concatenate(predictions, axis=0)
|
| 570 |
+
pred_final.append(np.argmax(predictions, axis=1).flatten()[0])
|
| 571 |
+
|
| 572 |
+
# add pred into test
|
| 573 |
+
test_df["pred"] = pred_final
|
| 574 |
+
# Add control column for easier wrong and right predictions
|
| 575 |
+
control = test_df.pred.values == test_df.label.values
|
| 576 |
+
test_df["control"] = control
|
| 577 |
+
# filtering false predictions
|
| 578 |
+
test_df = test_df[test_df.control == False]
|
| 579 |
+
test_df["pred_name"] = test_df.pred.apply(lambda x: label2name.get(x))
|
| 580 |
+
|
| 581 |
+
from sklearn.metrics import confusion_matrix
|
| 582 |
+
|
| 583 |
+
# We create a confusion matrix to better observe the classes that the model confuses.
|
| 584 |
+
pred_name_values = test_df.pred_name.values
|
| 585 |
+
label_values = test_df.label_name.values
|
| 586 |
+
confmat = confusion_matrix(label_values, pred_name_values, labels=list(name2label.keys()))
|
| 587 |
+
confmat
|
| 588 |
+
|
| 589 |
+
df_confusion_test = pd.crosstab(label_values, pred_name_values)
|
| 590 |
+
df_confusion_test
|
| 591 |
+
|
| 592 |
+
import matplotlib.pyplot as plt
|
| 593 |
+
import seaborn as sns
|
| 594 |
+
|
| 595 |
+
# Supposons que 'confmat' est votre matrice de confusion
|
| 596 |
+
|
| 597 |
+
fig, ax = plt.subplots(figsize=(10,10)) # changez la taille selon vos besoins
|
| 598 |
+
sns.heatmap(confmat, annot=True, fmt='d',
|
| 599 |
+
xticklabels=name2label.keys(), yticklabels=name2label.keys())
|
| 600 |
+
plt.ylabel('Vraies valeurs')
|
| 601 |
+
plt.xlabel('Prédictions')
|
| 602 |
+
plt.show()
|