--- library_name: transformers --- # HumanF-MarkrAI/Gukbap-Gemma3-4B-VL🍚 ## Model Details🍚 ### Model Description - **Developed by:** HumanF-MarkrAI - **Model type:** Korean-VL-Gemma3-4B - **Language(s):** Korean + English - **Context Length:** 2048 - **License:** cc-by-4.0 - **Finetuned from model:** [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). ### Model Sources When training, we used `H100 80GB GPU`x4. ### Implications🍚 If you want to know our model's details, please see [🔥Gukbap-LMM Blog🔥](https://kyujinpy.tistory.com/169). ### Training Method (SFT)🧐 The following papers contain the foundational methodologies for the dataset and training methods we are currently proceeding. - [LIMA](https://arxiv.org/abs/2305.11206). - [Gemma3](https://arxiv.org/abs/2503.19786). ### SFT Text-Datasets (Private) When we made the `Open-Source based dataset`, we use `microsoft/WizardLM-2-8x22B` through [DeepInfra](https://deepinfra.com/). Our datasets are made by `Evolving system`, which is propsed by [WizardLM](https://wizardlm.github.io/WizardLM2/). In training, we used 1849 training dataset, and 200 validation dataset. - **Wizard-Korea-Datasets:** [MarkrAI/Markr_WizardLM_train_ver4](https://huggingface.co/datasets/MarkrAI/Markr_WizardLM_train_ver4). > Learning rate: 1e-5; Epoch: 5 ## Benchmakrs🤗 ### Korean MM Benchmark Score (Zero-shot) We internally evaluated [🔥our code🔥](https://github.com/Marker-Inc-Korea/KoVLMEval). We utilized **gpt-4o-2024-08-06** in `K-LLAVA-W` evaluation. | Model | K-MMBench | K-MMStar | K-DTCBench | K-LLAVA-W | AVG | |:---------:|:-----:|:------:|:-----:|:-----:|:----:| | **Gukbap-Gemma3-4B**🍚 | 74.73 | 40.67 | 44.17 | **60.00** | **54.89** | | gemma-3-4b-it | 75.84 | 40.60 | 49.58 | **62.67** | 57.17 | | Gukbap-Gemma2-9B-VL🍚 | 80.16 | 54.20 | 52.92 | 63.83 | 62.78 | | Ovis1.6-Gemma2-9B | 52.46 | 50.40 | 47.08 | 55.67 | 51.40 | | VARCO-VISION-14B | **87.16** | **58.13** | **85.42** | 51.17 | **70.47** | | llama-3.2-Korean-Bllossom-AICA-5B | 26.01 | 21.60 | 17.08 | 45.33 | 27.51 | ### MM Benchmarks - Global MM Bench dataset: [OpenCampass MM leaderboard](https://rank.opencompass.org.cn/leaderboard-multimodal) - Korean MM Bench dataset: [NCSOFT](https://huggingface.co/NCSOFT). ## Gukbap-VL Series models🍚🍚 - [HumanF-MarkrAI/Gukbap-Gemma2-9B-VL](https://huggingface.co/HumanF-MarkrAI/Gukbap-Gemma2-9B-VL) - [HumanF-MarkrAI/Gukbap-Gemma3-4B-VL](https://huggingface.co/HumanF-MarkrAI/Gukbap-Gemma3-4B-VL) - [HumanF-MarkrAI/Gukbap-Gemma3-12B-VL](https://huggingface.co/HumanF-MarkrAI/Gukbap-Gemma3-12B-VL) - [HumanF-MarkrAI/Gukbap-Gemma3-27B-VL](https://huggingface.co/HumanF-MarkrAI/Gukbap-Gemma3-27B-VL) ## BibTeX ``` @article{HumanF-MarkrAI, title={Gukbap-Gemma3-4B-VL}, author={MarkrAI}, year={2025}, url={https://huggingface.co/HumanF-MarkrAI} } ```