MatteoFasulo commited on
Commit
aaf2270
·
verified ·
1 Parent(s): 96090e3

Update tokenizer

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -97,19 +97,19 @@ You can use this model for text classification with the `transformers` library:
97
  from transformers import pipeline
98
 
99
  # Load the text classification pipeline
100
- classifier = pipeline("text-classification", model="MatteoFasulo/mdeberta-v3-base-subjectivity-english")
101
 
102
  # Example usage for an objective sentence
103
  text1 = "The company reported a 10% increase in profits in the last quarter."
104
  result1 = classifier(text1)
105
  print(f"Text: '{text1}' Classification: {result1}")
106
- # Expected output: [{'label': 'OBJ', 'score': 0.99...}]
107
 
108
  # Example usage for a subjective sentence
109
  text2 = "This product is absolutely amazing and everyone should try it!"
110
  result2 = classifier(text2)
111
  print(f"Text: '{text2}' Classification: {result2}")
112
- # Expected output: [{'label': 'SUBJ', 'score': 0.98...}]
113
  ```
114
 
115
  ## Training procedure
 
97
  from transformers import pipeline
98
 
99
  # Load the text classification pipeline
100
+ classifier = pipeline("text-classification", model="MatteoFasulo/mdeberta-v3-base-subjectivity-english", tokenizer="microsoft/mdeberta-v3-base")
101
 
102
  # Example usage for an objective sentence
103
  text1 = "The company reported a 10% increase in profits in the last quarter."
104
  result1 = classifier(text1)
105
  print(f"Text: '{text1}' Classification: {result1}")
106
+ # Expected output: [{'label': 'OBJ', 'score': ...}]
107
 
108
  # Example usage for a subjective sentence
109
  text2 = "This product is absolutely amazing and everyone should try it!"
110
  result2 = classifier(text2)
111
  print(f"Text: '{text2}' Classification: {result2}")
112
+ # Expected output: [{'label': 'SUBJ', 'score': ...}]
113
  ```
114
 
115
  ## Training procedure