File size: 2,205 Bytes
008d3cb 8b4caa8 67a0303 008d3cb 3beb0d2 252d945 3beb0d2 8b4caa8 4272182 008d3cb 8b4caa8 008d3cb 8b4caa8 008d3cb 8b4caa8 008d3cb 8b4caa8 3beb0d2 008d3cb 3beb0d2 008d3cb 8b4caa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: cc-by-4.0
---
# IonoBench Models
[](https://github.com/Mert-chan/IonoBench)
[](https://doi.org/10.3390/rs17152557)
[](https://huggingface.co/datasets/Mertjhan/IonoBench)
**IonoBench**: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions
*Published in Remote Sensing (MDPI)*
## Contents
Each model folder contains:
- **Best Checkpoint**
Format: `MODELNAME_SessionNAME_best_checkpoint_yyyymmdd_hhmm.pth`
Example: `SimVP_AllFeatures/model_best.pth`
- **Training Logs**
Format: `MODELNAME_SessionNAME_lrXX_bsXX_yyyymmdd_hhmm.txt`
Example: `SimVP_AllFeatures/training_log.txt`
- **Test Results**
Format: `testing_info_yyyy-mm-dd_hh-mm.txt`
Contains evaluation metrics such as RMSE, R², and SSIM on test and storm periods
## Notes
- Original configuration files are included and reflect the training settings used.
- A layered configuration structure (`base → model → mode → CLI`) was adopted later for improved usability.
- The pretrained models are intended for reproducibility and evaluation; training tutorials and CLI tools are available on the GitHub page.
## Citation
If you use these models, please cite:
> Mert C. Turkmen, Yee Hui Lee, Eng Leong Tan (2025).
> *IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions*.
> Remote Sensing, 17(15), 2557. [https://doi.org/10.3390/rs17152557](https://doi.org/10.3390/rs17152557)
As well as the **original refences**:
- **SimVPv2**: Tan et al., 2024 — [arXiv:2211.12509](https://arxiv.org/abs/2211.12509)
- **SwinLSTM**: Tang et al., 2023 — [arXiv:2308.09891](https://arxiv.org/abs/2308.09891)
- **DCNN121**: Boulch et al., 2018 — [arXiv:1810.13273](https://arxiv.org/abs/1810.13273)
- **OpenSTL**: Tan et al., 2023 — [arXiv:2306.11249](https://arxiv.org/abs/2306.11249)
---
|