--- license: cc-by-4.0 --- # IonoBench Models [![GitHub](https://img.shields.io/badge/GitHub-Mert--chan%2FIonoBench-blue?logo=github)](https://github.com/Mert-chan/IonoBench) [![Paper](https://img.shields.io/badge/Paper-Remote%20Sensing-blue?logo=readthedocs)](https://doi.org/10.3390/rs17152557) [![HF Datasets](https://img.shields.io/badge/HF%20Datasets-IonoBench-blue?logo=huggingface&logoColor=white)](https://huggingface.co/datasets/Mertjhan/IonoBench) **IonoBench**: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions *Published in Remote Sensing (MDPI)* ## Contents Each model folder contains: - **Best Checkpoint** Format: `MODELNAME_SessionNAME_best_checkpoint_yyyymmdd_hhmm.pth` Example: `SimVP_AllFeatures/model_best.pth` - **Training Logs** Format: `MODELNAME_SessionNAME_lrXX_bsXX_yyyymmdd_hhmm.txt` Example: `SimVP_AllFeatures/training_log.txt` - **Test Results** Format: `testing_info_yyyy-mm-dd_hh-mm.txt` Contains evaluation metrics such as RMSE, R², and SSIM on test and storm periods ## Notes - Original configuration files are included and reflect the training settings used. - A layered configuration structure (`base → model → mode → CLI`) was adopted later for improved usability. - The pretrained models are intended for reproducibility and evaluation; training tutorials and CLI tools are available on the GitHub page. ## Citation If you use these models, please cite: > Mert C. Turkmen, Yee Hui Lee, Eng Leong Tan (2025). > *IonoBench: Evaluating Spatiotemporal Models for Ionospheric Forecasting under Solar-Balanced and Storm-Aware Conditions*. > Remote Sensing, 17(15), 2557. [https://doi.org/10.3390/rs17152557](https://doi.org/10.3390/rs17152557) As well as the **original refences**: - **SimVPv2**: Tan et al., 2024 — [arXiv:2211.12509](https://arxiv.org/abs/2211.12509) - **SwinLSTM**: Tang et al., 2023 — [arXiv:2308.09891](https://arxiv.org/abs/2308.09891) - **DCNN121**: Boulch et al., 2018 — [arXiv:1810.13273](https://arxiv.org/abs/1810.13273) - **OpenSTL**: Tan et al., 2023 — [arXiv:2306.11249](https://arxiv.org/abs/2306.11249) ---