Mungert commited on
Commit
2bca548
·
verified ·
0 Parent(s):

Super-squash history to reclaim storage

Browse files
Files changed (32) hide show
  1. .gitattributes +79 -0
  2. Dans-PersonalityEngine-V1.3.0-24b-bf16.gguf +3 -0
  3. Dans-PersonalityEngine-V1.3.0-24b-bf16_q8_0.gguf +3 -0
  4. Dans-PersonalityEngine-V1.3.0-24b-f16_q8_0.gguf +3 -0
  5. Dans-PersonalityEngine-V1.3.0-24b-iq1_m.gguf +3 -0
  6. Dans-PersonalityEngine-V1.3.0-24b-iq1_s.gguf +3 -0
  7. Dans-PersonalityEngine-V1.3.0-24b-iq2_m.gguf +3 -0
  8. Dans-PersonalityEngine-V1.3.0-24b-iq2_s.gguf +3 -0
  9. Dans-PersonalityEngine-V1.3.0-24b-iq2_xs.gguf +3 -0
  10. Dans-PersonalityEngine-V1.3.0-24b-iq2_xxs.gguf +3 -0
  11. Dans-PersonalityEngine-V1.3.0-24b-iq3_m.gguf +3 -0
  12. Dans-PersonalityEngine-V1.3.0-24b-iq3_s.gguf +3 -0
  13. Dans-PersonalityEngine-V1.3.0-24b-iq3_xs.gguf +3 -0
  14. Dans-PersonalityEngine-V1.3.0-24b-iq3_xxs.gguf +3 -0
  15. Dans-PersonalityEngine-V1.3.0-24b-iq4_nl.gguf +3 -0
  16. Dans-PersonalityEngine-V1.3.0-24b-iq4_xs.gguf +3 -0
  17. Dans-PersonalityEngine-V1.3.0-24b-q2_k_m.gguf +3 -0
  18. Dans-PersonalityEngine-V1.3.0-24b-q2_k_s.gguf +3 -0
  19. Dans-PersonalityEngine-V1.3.0-24b-q3_k_m.gguf +3 -0
  20. Dans-PersonalityEngine-V1.3.0-24b-q3_k_s.gguf +3 -0
  21. Dans-PersonalityEngine-V1.3.0-24b-q4_0.gguf +3 -0
  22. Dans-PersonalityEngine-V1.3.0-24b-q4_1.gguf +3 -0
  23. Dans-PersonalityEngine-V1.3.0-24b-q4_k_m.gguf +3 -0
  24. Dans-PersonalityEngine-V1.3.0-24b-q4_k_s.gguf +3 -0
  25. Dans-PersonalityEngine-V1.3.0-24b-q5_0.gguf +3 -0
  26. Dans-PersonalityEngine-V1.3.0-24b-q5_1.gguf +3 -0
  27. Dans-PersonalityEngine-V1.3.0-24b-q5_k_m.gguf +3 -0
  28. Dans-PersonalityEngine-V1.3.0-24b-q5_k_s.gguf +3 -0
  29. Dans-PersonalityEngine-V1.3.0-24b-q6_k_m.gguf +3 -0
  30. Dans-PersonalityEngine-V1.3.0-24b-q8_0.gguf +3 -0
  31. Dans-PersonalityEngine-V1.3.0-24b.imatrix +3 -0
  32. README.md +719 -0
.gitattributes ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Dans-PersonalityEngine-V1.3.0-24b-f16.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Dans-PersonalityEngine-V1.3.0-24b-f16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Dans-PersonalityEngine-V1.3.0-24b-bf16_q8_0.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Dans-PersonalityEngine-V1.3.0-24b-f16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Dans-PersonalityEngine-V1.3.0-24b-bf16_q6_k.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Dans-PersonalityEngine-V1.3.0-24b-f16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Dans-PersonalityEngine-V1.3.0-24b-bf16_q4_k.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Dans-PersonalityEngine-V1.3.0-24b-q2_k_l.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Dans-PersonalityEngine-V1.3.0-24b-q3_k_l.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Dans-PersonalityEngine-V1.3.0-24b-q4_k_l.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Dans-PersonalityEngine-V1.3.0-24b-q5_k_l.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Dans-PersonalityEngine-V1.3.0-24b-q6_k_l.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Dans-PersonalityEngine-V1.3.0-24b-q2_k_m.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Dans-PersonalityEngine-V1.3.0-24b-q2_k_s.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Dans-PersonalityEngine-V1.3.0-24b-q3_k_m.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Dans-PersonalityEngine-V1.3.0-24b-q3_k_s.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Dans-PersonalityEngine-V1.3.0-24b-q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Dans-PersonalityEngine-V1.3.0-24b-q4_k_s.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Dans-PersonalityEngine-V1.3.0-24b-q5_k_m.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Dans-PersonalityEngine-V1.3.0-24b-q5_k_s.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Dans-PersonalityEngine-V1.3.0-24b-q6_k_m.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Dans-PersonalityEngine-V1.3.0-24b-q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Dans-PersonalityEngine-V1.3.0-24b-q4_0.gguf filter=lfs diff=lfs merge=lfs -text
59
+ Dans-PersonalityEngine-V1.3.0-24b-q4_1.gguf filter=lfs diff=lfs merge=lfs -text
60
+ Dans-PersonalityEngine-V1.3.0-24b-q4_0_l.gguf filter=lfs diff=lfs merge=lfs -text
61
+ Dans-PersonalityEngine-V1.3.0-24b-q4_1_l.gguf filter=lfs diff=lfs merge=lfs -text
62
+ Dans-PersonalityEngine-V1.3.0-24b-q5_0.gguf filter=lfs diff=lfs merge=lfs -text
63
+ Dans-PersonalityEngine-V1.3.0-24b-q5_1.gguf filter=lfs diff=lfs merge=lfs -text
64
+ Dans-PersonalityEngine-V1.3.0-24b-q5_0_l.gguf filter=lfs diff=lfs merge=lfs -text
65
+ Dans-PersonalityEngine-V1.3.0-24b-q5_1_l.gguf filter=lfs diff=lfs merge=lfs -text
66
+ Dans-PersonalityEngine-V1.3.0-24b-iq1_s.gguf filter=lfs diff=lfs merge=lfs -text
67
+ Dans-PersonalityEngine-V1.3.0-24b-iq1_m.gguf filter=lfs diff=lfs merge=lfs -text
68
+ Dans-PersonalityEngine-V1.3.0-24b-iq2_xs.gguf filter=lfs diff=lfs merge=lfs -text
69
+ Dans-PersonalityEngine-V1.3.0-24b-iq2_xxs.gguf filter=lfs diff=lfs merge=lfs -text
70
+ Dans-PersonalityEngine-V1.3.0-24b-iq2_s.gguf filter=lfs diff=lfs merge=lfs -text
71
+ Dans-PersonalityEngine-V1.3.0-24b-iq2_m.gguf filter=lfs diff=lfs merge=lfs -text
72
+ Dans-PersonalityEngine-V1.3.0-24b-iq3_xs.gguf filter=lfs diff=lfs merge=lfs -text
73
+ Dans-PersonalityEngine-V1.3.0-24b-iq3_xxs.gguf filter=lfs diff=lfs merge=lfs -text
74
+ Dans-PersonalityEngine-V1.3.0-24b-iq3_s.gguf filter=lfs diff=lfs merge=lfs -text
75
+ Dans-PersonalityEngine-V1.3.0-24b-iq3_m.gguf filter=lfs diff=lfs merge=lfs -text
76
+ Dans-PersonalityEngine-V1.3.0-24b-iq4_xs.gguf filter=lfs diff=lfs merge=lfs -text
77
+ Dans-PersonalityEngine-V1.3.0-24b-iq4_nl.gguf filter=lfs diff=lfs merge=lfs -text
78
+ Dans-PersonalityEngine-V1.3.0-24b.imatrix filter=lfs diff=lfs merge=lfs -text
79
+ Dans-PersonalityEngine-V1.3.0-24b-bf16.gguf filter=lfs diff=lfs merge=lfs -text
Dans-PersonalityEngine-V1.3.0-24b-bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d5c1194346ba7195823891334147203e8b5ec3ccfac4f45271c18ad03b48168
3
+ size 47153531296
Dans-PersonalityEngine-V1.3.0-24b-bf16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9ce59aa06d68684e6a4efc533b80d49bf67c7d2bac5498245661fbc01432eed
3
+ size 26313083296
Dans-PersonalityEngine-V1.3.0-24b-f16_q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11a51f9b4f71af25e84b09a99a05cd9547f8718aea8aeb5f95b3ca958b4827db
3
+ size 33587579296
Dans-PersonalityEngine-V1.3.0-24b-iq1_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48cb266f5d9d78e22c97c68039a835533f607aa000f854df343c805a143529e7
3
+ size 7045827296
Dans-PersonalityEngine-V1.3.0-24b-iq1_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca1ac588a29719b4226f3ee0e5a59ad6d9d9b7ff8ed765a5ceea3a0d729d505a
3
+ size 6516624096
Dans-PersonalityEngine-V1.3.0-24b-iq2_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:373e20c26dba9636f00fcdbd7f1aecb2ba88e96f0cf04bb3d5a78eb7d20c56a4
3
+ size 8686521056
Dans-PersonalityEngine-V1.3.0-24b-iq2_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61e29cea2d8d631944affcd2b7d280cec9ced0a68f5f2fa5cc23ff33b3ed314e
3
+ size 8247429856
Dans-PersonalityEngine-V1.3.0-24b-iq2_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3afa5517609b7e4af39802409b598e0e9175c024dbb75b293525bcfd0f3b4fbc
3
+ size 7989545696
Dans-PersonalityEngine-V1.3.0-24b-iq2_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20d203c0e87f257a03d761c4031d98456207f34c64485174bd5e1a60656d99f5
3
+ size 7355484896
Dans-PersonalityEngine-V1.3.0-24b-iq3_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba5d5a32b30dbd687772bd0fe5acb4fd271449e5b2d07e1e8aff525d41f7db93
3
+ size 10617866976
Dans-PersonalityEngine-V1.3.0-24b-iq3_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c05865e7ee40e45e2f2d1ba09ffa49acf813517c5d20eb295b03ac00e5d36f94
3
+ size 10506455776
Dans-PersonalityEngine-V1.3.0-24b-iq3_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4acdee8d1914c50e76108f5c35987966894dcab15e97c49e10de0921a22c9c7d
3
+ size 9985444576
Dans-PersonalityEngine-V1.3.0-24b-iq3_xxs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e46b2b15bbb21f626d0580d5085f23fcf526d431ff2909b138c6a2f2145ae118
3
+ size 9510963936
Dans-PersonalityEngine-V1.3.0-24b-iq4_nl.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72875c88e516ea4fe7dc0aeb3675bee7ba283e8261e383cab9bf0b71d3384b97
3
+ size 13468027616
Dans-PersonalityEngine-V1.3.0-24b-iq4_xs.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:111826c1b44880e0575123f5f36258bdbf3124f6ba22e82b546d6e879455a1cf
3
+ size 12758928096
Dans-PersonalityEngine-V1.3.0-24b-q2_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3a453e11a20ed173e07782c9884631cc6e95e9878023d6725f99df1fb1ff89b
3
+ size 9142323936
Dans-PersonalityEngine-V1.3.0-24b-q2_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5661098080e7c1c75fc70a60b5a6342112435522b3cadf38818a2e5afaac1dd
3
+ size 8389970656
Dans-PersonalityEngine-V1.3.0-24b-q3_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03a1ed5e8844f4e286920163cac717f7f09e8fd76c349cdf28961d62395d0a9
3
+ size 11644488416
Dans-PersonalityEngine-V1.3.0-24b-q3_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8eee56a38bb734f096ff567f44dcc1781825a3fb330a08c8afecbf3000e409c
3
+ size 10641787616
Dans-PersonalityEngine-V1.3.0-24b-q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce27dd3305d977935f601d65c3e96d56e55cb554a5d09dabf098c4e006cc8ce0
3
+ size 13268798176
Dans-PersonalityEngine-V1.3.0-24b-q4_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3b24a8160cfc4797a7dea11bfddf0708d01a4425deef4faaaa9a6fa9f9c5d65
3
+ size 14742047456
Dans-PersonalityEngine-V1.3.0-24b-q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23cf35d588b1ea749d823cdb49598b0df5aa8d39536e7817462aa87bdb931e8e
3
+ size 14344080096
Dans-PersonalityEngine-V1.3.0-24b-q4_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29285f2376378b0c58e657db6db8206a68cdfdaaef6aba564e67223e457ed725
3
+ size 13829786336
Dans-PersonalityEngine-V1.3.0-24b-q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cec29a2550f63583b6147e9206bbbb42318f209704e2b2d1d43350c6282ff275
3
+ size 16215296736
Dans-PersonalityEngine-V1.3.0-24b-q5_1.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:645f2a93a6c3331e8e5ae88075d8597055921e9d2d8004f8a9a22c6c9b6f70bc
3
+ size 17688546016
Dans-PersonalityEngine-V1.3.0-24b-q5_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6635d463ad57e2346d31b6a5af838605e29b229218a69e98a5dea2fdfc866c82
3
+ size 16875408096
Dans-PersonalityEngine-V1.3.0-24b-q5_k_s.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e455df8480bb348590c02e5e25e72d988b44e17afb1a79e29b3f9b03a7d2ab83
3
+ size 16599665376
Dans-PersonalityEngine-V1.3.0-24b-q6_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cea813722f3c315fdf9ceb8cd0b241abcb605bedcfd0fcc02992266f7ee8ade
3
+ size 19345951456
Dans-PersonalityEngine-V1.3.0-24b-q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c2dc8368986010e5949a35a10911c70b4f1ea22af584ed610f0b4585c829f6a
3
+ size 25054792096
Dans-PersonalityEngine-V1.3.0-24b.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c16fa090182e1d596f2c8730ba900e62ffa6b50e446a0b3ddac6c2ed9ed521bb
3
+ size 10003538
README.md ADDED
@@ -0,0 +1,719 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: >-
3
+ https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.3.0-24b/resolve/main/resources/pe.png
4
+ license: apache-2.0
5
+ tags:
6
+ - general-purpose
7
+ - roleplay
8
+ - storywriting
9
+ - chemistry
10
+ - biology
11
+ - code
12
+ - climate
13
+ - axolotl
14
+ - text-generation-inference
15
+ - finetune
16
+ - legal
17
+ - medical
18
+ - finance
19
+ datasets:
20
+ - PocketDoc/Dans-Prosemaxx-RP
21
+ - PocketDoc/Dans-Personamaxx-Logs-2
22
+ - PocketDoc/Dans-Personamaxx-VN
23
+ - PocketDoc/Dans-Kinomaxx-VanillaBackrooms
24
+ - PocketDoc/Dans-Prosemaxx-Gutenberg
25
+ - PocketDoc/Dans-Prosemaxx-Cowriter-3-XL
26
+ - PocketDoc/Dans-Prosemaxx-Adventure
27
+ - PocketDoc/Dans-Failuremaxx-Adventure-3
28
+ - PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-2
29
+ - PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-3
30
+ - PocketDoc/Dans-Prosemaxx-InstructWriter-Continue-2
31
+ - PocketDoc/Dans-Prosemaxx-Instructwriter-Long
32
+ - PocketDoc/Dans-Prosemaxx-RepRemover-1
33
+ - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
34
+ - AquaV/US-Army-Survival-Sharegpt
35
+ - AquaV/Multi-Environment-Operations-Sharegpt
36
+ - AquaV/Resistance-Sharegpt
37
+ - AquaV/Interrogation-Sharegpt
38
+ - AquaV/Chemical-Biological-Safety-Applications-Sharegpt
39
+ - AquaV/Energetic-Materials-Sharegpt
40
+ - PocketDoc/Dans-Mathmaxx
41
+ - PJMixers/Math-Multiturn-1K-ShareGPT
42
+ - PocketDoc/Dans-Taskmaxx
43
+ - PocketDoc/Dans-Taskmaxx-DataPrepper
44
+ - PocketDoc/Dans-Taskmaxx-ConcurrentQA-Reworked
45
+ - PocketDoc/Dans-Taskmaxx-TableGPT
46
+ - PocketDoc/Dans-Taskmaxx-SciRIFF
47
+ - PocketDoc/Dans-Taskmaxx-Edit
48
+ - PocketDoc/Dans-Toolmaxx-Agent
49
+ - PocketDoc/Dans-Toolmaxx-ShellCommands
50
+ - PocketDoc/Dans-Toolmaxx-Functions-Toolbench
51
+ - PocketDoc/Dans-Toolmaxx-Functions-ToolACE
52
+ - PocketDoc/Dans-Toolmaxx-Functions-apigen-subset
53
+ - PocketDoc/Dans-Assistantmaxx-OpenAssistant2
54
+ - PocketDoc/Dans-Assistantmaxx-Opus-Merge-2
55
+ - PocketDoc/Dans-Assistantmaxx-sonnetorca-subset
56
+ - PocketDoc/Dans-Assistantmaxx-sonnetorca-subset-2
57
+ - PocketDoc/Dans-Assistantmaxx-Synthia
58
+ - PocketDoc/Dans-Assistantmaxx-ASL
59
+ - PocketDoc/Dans-Assistantmaxx-PersonaLLM-Opus
60
+ - PocketDoc/Dans-Assistantmaxx-LongAlign
61
+ - PocketDoc/Dans-Assistantmaxx-OpenLeecher-Instruct
62
+ - PocketDoc/Dans-Assistantmaxx-Tulu3-IF
63
+ - PocketDoc/Dans-Systemmaxx
64
+ - PocketDoc/Dans-Logicmaxx-SAT-AP
65
+ - PJMixers/grimulkan_theory-of-mind-ShareGPT
66
+ - PJMixers/grimulkan_physical-reasoning-ShareGPT
67
+ - PocketDoc/Dans-Reasoningmaxx-NaturalReasoning
68
+ - PocketDoc/Dans-Reasoningmaxx-WebInstruct
69
+ - PocketDoc/Dans-Reasoningmaxx-GeneralReasoning
70
+ - PocketDoc/Dans-Assistantmaxx-ClosedInstruct
71
+ language:
72
+ - en
73
+ - ar
74
+ - de
75
+ - fr
76
+ - es
77
+ - hi
78
+ - pt
79
+ - ja
80
+ - ko
81
+ base_model:
82
+ - mistralai/Mistral-Small-3.1-24B-Base-2503
83
+ pipeline_tag: text-generation
84
+ library_name: transformers
85
+ ---
86
+
87
+ # <span style="color: #7FFF7F;">Dans-PersonalityEngine-V1.3.0-24b GGUF Models</span>
88
+
89
+
90
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
91
+
92
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`f5cd27b7`](https://github.com/ggerganov/llama.cpp/commit/f5cd27b71da3ac375a04a41643d14fc779a8057b).
93
+
94
+
95
+
96
+
97
+ ## <span style="color: #7FFF7F;">Ultra-Low-Bit Quantization with IQ-DynamicGate (1-2 bit)</span>
98
+
99
+ Our latest quantization method introduces **precision-adaptive quantization** for ultra-low-bit models (1-2 bit), with benchmark-proven improvements on **Llama-3-8B**. This approach uses layer-specific strategies to preserve accuracy while maintaining extreme memory efficiency.
100
+
101
+ ### **Benchmark Context**
102
+ All tests conducted on **Llama-3-8B-Instruct** using:
103
+ - Standard perplexity evaluation pipeline
104
+ - 2048-token context window
105
+ - Same prompt set across all quantizations
106
+
107
+ ### **Method**
108
+ - **Dynamic Precision Allocation**:
109
+ - First/Last 25% of layers → IQ4_XS (selected layers)
110
+ - Middle 50% → IQ2_XXS/IQ3_S (increase efficiency)
111
+ - **Critical Component Protection**:
112
+ - Embeddings/output layers use Q5_K
113
+ - Reduces error propagation by 38% vs standard 1-2bit
114
+
115
+ ### **Quantization Performance Comparison (Llama-3-8B)**
116
+
117
+ | Quantization | Standard PPL | DynamicGate PPL | Δ PPL | Std Size | DG Size | Δ Size | Std Speed | DG Speed |
118
+ |--------------|--------------|------------------|---------|----------|---------|--------|-----------|----------|
119
+ | IQ2_XXS | 11.30 | 9.84 | -12.9% | 2.5G | 2.6G | +0.1G | 234s | 246s |
120
+ | IQ2_XS | 11.72 | 11.63 | -0.8% | 2.7G | 2.8G | +0.1G | 242s | 246s |
121
+ | IQ2_S | 14.31 | 9.02 | -36.9% | 2.7G | 2.9G | +0.2G | 238s | 244s |
122
+ | IQ1_M | 27.46 | 15.41 | -43.9% | 2.2G | 2.5G | +0.3G | 206s | 212s |
123
+ | IQ1_S | 53.07 | 32.00 | -39.7% | 2.1G | 2.4G | +0.3G | 184s | 209s |
124
+
125
+ **Key**:
126
+ - PPL = Perplexity (lower is better)
127
+ - Δ PPL = Percentage change from standard to DynamicGate
128
+ - Speed = Inference time (CPU avx2, 2048 token context)
129
+ - Size differences reflect mixed quantization overhead
130
+
131
+ **Key Improvements:**
132
+ - 🔥 **IQ1_M** shows massive 43.9% perplexity reduction (27.46 → 15.41)
133
+ - 🚀 **IQ2_S** cuts perplexity by 36.9% while adding only 0.2GB
134
+ - ⚡ **IQ1_S** maintains 39.7% better accuracy despite 1-bit quantization
135
+
136
+ **Tradeoffs:**
137
+ - All variants have modest size increases (0.1-0.3GB)
138
+ - Inference speeds remain comparable (<5% difference)
139
+
140
+
141
+ ### **When to Use These Models**
142
+ 📌 **Fitting models into GPU VRAM**
143
+
144
+ ✔ **Memory-constrained deployments**
145
+
146
+ ✔ **Cpu and Edge Devices** where 1-2bit errors can be tolerated
147
+
148
+ ✔ **Research** into ultra-low-bit quantization
149
+
150
+
151
+
152
+ ## **Choosing the Right Model Format**
153
+
154
+ Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.
155
+
156
+ ### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**
157
+ - A 16-bit floating-point format designed for **faster computation** while retaining good precision.
158
+ - Provides **similar dynamic range** as FP32 but with **lower memory usage**.
159
+ - Recommended if your hardware supports **BF16 acceleration** (check your device's specs).
160
+ - Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.
161
+
162
+ 📌 **Use BF16 if:**
163
+ ✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).
164
+ ✔ You want **higher precision** while saving memory.
165
+ ✔ You plan to **requantize** the model into another format.
166
+
167
+ 📌 **Avoid BF16 if:**
168
+ ❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).
169
+ ❌ You need compatibility with older devices that lack BF16 optimization.
170
+
171
+ ---
172
+
173
+ ### **F16 (Float 16) – More widely supported than BF16**
174
+ - A 16-bit floating-point **high precision** but with less of range of values than BF16.
175
+ - Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).
176
+ - Slightly lower numerical precision than BF16 but generally sufficient for inference.
177
+
178
+ 📌 **Use F16 if:**
179
+ ✔ Your hardware supports **FP16** but **not BF16**.
180
+ ✔ You need a **balance between speed, memory usage, and accuracy**.
181
+ ✔ You are running on a **GPU** or another device optimized for FP16 computations.
182
+
183
+ 📌 **Avoid F16 if:**
184
+ ❌ Your device lacks **native FP16 support** (it may run slower than expected).
185
+ ❌ You have memory limitations.
186
+
187
+ ---
188
+
189
+ ### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**
190
+ Quantization reduces model size and memory usage while maintaining as much accuracy as possible.
191
+ - **Lower-bit models (Q4_K)** → **Best for minimal memory usage**, may have lower precision.
192
+ - **Higher-bit models (Q6_K, Q8_0)** → **Better accuracy**, requires more memory.
193
+
194
+ 📌 **Use Quantized Models if:**
195
+ ✔ You are running inference on a **CPU** and need an optimized model.
196
+ ✔ Your device has **low VRAM** and cannot load full-precision models.
197
+ ✔ You want to reduce **memory footprint** while keeping reasonable accuracy.
198
+
199
+ 📌 **Avoid Quantized Models if:**
200
+ ❌ You need **maximum accuracy** (full-precision models are better for this).
201
+ ❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).
202
+
203
+ ---
204
+
205
+ ### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**
206
+ These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.
207
+
208
+ - **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.
209
+ - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.
210
+ - **Trade-off**: Lower accuracy compared to higher-bit quantizations.
211
+
212
+ - **IQ3_S**: Small block size for **maximum memory efficiency**.
213
+ - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.
214
+
215
+ - **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.
216
+ - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.
217
+
218
+ - **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.
219
+ - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.
220
+
221
+ - **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.
222
+ - **Use case**: Best for **ARM-based devices** or **low-memory environments**.
223
+
224
+ ---
225
+
226
+ ### **Summary Table: Model Format Selection**
227
+
228
+ | Model Format | Precision | Memory Usage | Device Requirements | Best Use Case |
229
+ |--------------|------------|---------------|----------------------|---------------|
230
+ | **BF16** | Highest | High | BF16-supported GPU/CPUs | High-speed inference with reduced memory |
231
+ | **F16** | High | High | FP16-supported devices | GPU inference when BF16 isn't available |
232
+ | **Q4_K** | Medium Low | Low | CPU or Low-VRAM devices | Best for memory-constrained environments |
233
+ | **Q6_K** | Medium | Moderate | CPU with more memory | Better accuracy while still being quantized |
234
+ | **Q8_0** | High | Moderate | CPU or GPU with enough VRAM | Best accuracy among quantized models |
235
+ | **IQ3_XS** | Very Low | Very Low | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |
236
+ | **Q4_0** | Low | Low | ARM or low-memory devices | llama.cpp can optimize for ARM devices |
237
+
238
+ ---
239
+
240
+ ## **Included Files & Details**
241
+
242
+ ### `Dans-PersonalityEngine-V1.3.0-24b-bf16.gguf`
243
+ - Model weights preserved in **BF16**.
244
+ - Use this if you want to **requantize** the model into a different format.
245
+ - Best if your device supports **BF16 acceleration**.
246
+
247
+ ### `Dans-PersonalityEngine-V1.3.0-24b-f16.gguf`
248
+ - Model weights stored in **F16**.
249
+ - Use if your device supports **FP16**, especially if BF16 is not available.
250
+
251
+ ### `Dans-PersonalityEngine-V1.3.0-24b-bf16-q8_0.gguf`
252
+ - **Output & embeddings** remain in **BF16**.
253
+ - All other layers quantized to **Q8_0**.
254
+ - Use if your device supports **BF16** and you want a quantized version.
255
+
256
+ ### `Dans-PersonalityEngine-V1.3.0-24b-f16-q8_0.gguf`
257
+ - **Output & embeddings** remain in **F16**.
258
+ - All other layers quantized to **Q8_0**.
259
+
260
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q4_k.gguf`
261
+ - **Output & embeddings** quantized to **Q8_0**.
262
+ - All other layers quantized to **Q4_K**.
263
+ - Good for **CPU inference** with limited memory.
264
+
265
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q4_k_s.gguf`
266
+ - Smallest **Q4_K** variant, using less memory at the cost of accuracy.
267
+ - Best for **very low-memory setups**.
268
+
269
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q6_k.gguf`
270
+ - **Output & embeddings** quantized to **Q8_0**.
271
+ - All other layers quantized to **Q6_K** .
272
+
273
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q8_0.gguf`
274
+ - Fully **Q8** quantized model for better accuracy.
275
+ - Requires **more memory** but offers higher precision.
276
+
277
+ ### `Dans-PersonalityEngine-V1.3.0-24b-iq3_xs.gguf`
278
+ - **IQ3_XS** quantization, optimized for **extreme memory efficiency**.
279
+ - Best for **ultra-low-memory devices**.
280
+
281
+ ### `Dans-PersonalityEngine-V1.3.0-24b-iq3_m.gguf`
282
+ - **IQ3_M** quantization, offering a **medium block size** for better accuracy.
283
+ - Suitable for **low-memory devices**.
284
+
285
+ ### `Dans-PersonalityEngine-V1.3.0-24b-q4_0.gguf`
286
+ - Pure **Q4_0** quantization, optimized for **ARM devices**.
287
+ - Best for **low-memory environments**.
288
+ - Prefer IQ4_NL for better accuracy.
289
+
290
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
291
+ ❤ **Please click "Like" if you find this useful!**
292
+ Help me test my **AI-Powered Network Monitor Assistant** with **quantum-ready security checks**:
293
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/dashboard/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
294
+
295
+ 💬 **How to test**:
296
+ Choose an **AI assistant type**:
297
+ - `TurboLLM` (GPT-4o-mini)
298
+ - `HugLLM` (Hugginface Open-source)
299
+ - `TestLLM` (Experimental CPU-only)
300
+
301
+ ### **What I’m Testing**
302
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
303
+ - **Function calling** against live network services
304
+ - **How small can a model go** while still handling:
305
+ - Automated **Nmap scans**
306
+ - **Quantum-readiness checks**
307
+ - **Network Monitoring tasks**
308
+
309
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads):
310
+ - ✅ **Zero-configuration setup**
311
+ - ⏳ 30s load time (slow inference but **no API costs**)
312
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
313
+
314
+ ### **Other Assistants**
315
+ 🟢 **TurboLLM** – Uses **gpt-4o-mini** for:
316
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
317
+ - **Real-time network diagnostics and monitoring**
318
+ - **Security Audits**
319
+ - **Penetration testing** (Nmap/Metasploit)
320
+
321
+
322
+ 🔵 **HugLLM** – Latest Open-source models:
323
+ - 🌐 Runs on Hugging Face Inference API
324
+
325
+ ### 💡 **Example commands to you could test**:
326
+ 1. `"Give me info on my websites SSL certificate"`
327
+ 2. `"Check if my server is using quantum safe encyption for communication"`
328
+ 3. `"Run a comprehensive security audit on my server"`
329
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution!
330
+
331
+ ### Final Word
332
+
333
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
334
+
335
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
336
+
337
+ I'm also open to job opportunities or sponsorship.
338
+
339
+ Thank you! 😊
340
+
341
+
342
+
343
+ <!doctype html>
344
+ <html lang="en">
345
+ <head>
346
+ <meta charset="UTF-8" />
347
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
348
+ <title>Dans-PersonalityEngine-V1.3.0-24b</title>
349
+ </head>
350
+ <div class="crt-container">
351
+ <div class="crt-case">
352
+ <div class="crt-inner-case">
353
+ <div class="crt-bezel">
354
+ <div class="terminal-screen">
355
+ <div style="text-align: center">
356
+ <h2>Dans-PersonalityEngine-V1.3.0-24b</h2>
357
+ <pre class="code-block" style="display: inline-block; text-align: left; font-size: clamp(2px, 0.8vw, 14px); line-height: 1.2; max-width: 100%; overflow: hidden; white-space: pre;">
358
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⠀⠄⠀⡂⠀⠁⡄⢀⠁⢀⣈⡄⠌⠐⠠⠤⠄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
359
+ ⠀⠀⠀⠀⠀⠀⠀⠀⡄⠆⠀⢠⠀⠛⣸⣄⣶⣾⡷⡾⠘⠃⢀⠀⣴⠀⡄⠰⢆⣠⠘⠰⠀⡀⠀⠀⠀⠀⠀
360
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠃⠀⡋⢀⣤⡿⠟⠋⠁⠀⡠⠤⢇⠋⠀⠈⠃⢀⠀⠈⡡⠤⠀⠀⠁⢄⠀⠀⠀⠀
361
+ ⠀⠀⠀⠀⠀⠁⡂⠀⠀⣀⣔⣧⠟⠋⠀⢀⡄⠀⠪⣀⡂⢁⠛⢆⠀⠀⠀⢎⢀⠄⢡⠢⠛⠠⡀⠀⠄⠀⠀
362
+ ⠀⠀⡀⠡⢑⠌⠈⣧⣮⢾⢏⠁⠀⠀⡀⠠⠦⠈⠀⠞⠑⠁⠀⠀⢧⡄⠈⡜⠷⠒⢸⡇⠐⠇⠿⠈⣖⠂⠀
363
+ ⠀⢌⠀⠤⠀⢠⣞⣾⡗⠁⠀⠈⠁⢨⡼⠀⠀⠀⢀⠀⣀⡤⣄⠄⠈⢻⡇⠀⠐⣠⠜⠑⠁⠀⣀⡔⡿⠨⡄
364
+ ⠈⠂⠀⠆⠀⣼⣾⠟⠀⠑⠀⡐⠗⠉⠀⠐⠶⣤⡵⠋⠀⠠⠹⡌⡀⠘⠇⢠⣾⡣⣀⡴⠋⠅⠈⢊⠠⡱⡀
365
+ ⠪⠑⢌⠂⣼⣿⡟⠀⠀⠙⠀⠀⠀⡀⠀⠀⠐⡞⡐⠀⠀⡧⠀⢀⠠⠀⣁⠾⡇⠀⠙⡁⠀⠀⢀⣨⣄⡠⢱
366
+ ⣸⠈⠊⠙⣛⣿⡧⠔⠚⠛⠳⣄⣀⡬⠤⠬⠼⡣⠃⠀⢀⡗⠀⡤⠞⠙⠄⠂⠃⢀⣠⣤⠶⠙⠅⠁⠃⠋⠈
367
+ ⢋⠼⣀⠰⢯⢿⠁⠀⢢⠀⠀⢐⠋⡀⠀⠈⠁⠀⣀⣰⠏⠒⠙⠈⠀⣀⡤⠞⢁⣼⠏⠘⢀⣀⢤⢤⡐⢈⠂
368
+ ⠀⠢⠀⠀⠸⣿⡄⠲⠚⠘⠚⠃⢀⠀⠈⢋⠶⠛⠉⠉⢃⣀⢤⢾⠋⣁⡤⡚⠁⢹⠁⠠⢛⠠⠬⠁⢬⠀⠀
369
+ ⠀⠈⢳⣒⠋⠉⣿⢐⠠⣀⣃⠀⠀⠉⠂⢁⣀⣀⡤⢞⠩⢑⡨⠰⡞⠁⠁⢀⡠⠾⠎⡈⡌⡈⡓⡀⠄⠀⠀
370
+ ⠀⠀⠀⠉⠘⠃⢻⡒⠦⢼⣿⣛⣻⣿⡷⢄⣀⣀⣠⣴⢾⣿⣆⣡⡄⣠⣪⡿⣷⣾⣷⣧⡡⠅⣇⠍⠀⠀⠀
371
+ ⠀⠀⠀⠀⠀⠀⠀⠙⠒⠒⠛⠛⠓⠉⢹⠀⣷⠴⣻⣽⡻⢧⢻⡿⡏⣼⢿⣻⢾⣿⣿⣿⡿⢠ ⠀⠀⠀⠀
372
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠂⠻⠨⠰⢋⡅⠉⣑⡇⡗⣿⢂⣸⡿⣿⣛⠿⠃⠁ ⠀⠀⠀⠀
373
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠳⣌⣙⣸⢧⣿⣕⣼⣇⢹⠀⠀⠀⠀⠀⠀⠀⠀⠀
374
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣸⢧⢟⢟⡟⣾⠀⠀⠀⠀⠀⠀⠀⠀⠀
375
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢰⠙⣾⡟⣻⡕⣹⠀⠀⠀⠀⠀⠀⠀⠀⠀
376
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⢰⡏⢠⡿⠾⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀
377
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⢸⠸⡇⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
378
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⢸⢸⡇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
379
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠇⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
380
+ </pre>
381
+ </div>
382
+ <p>
383
+ Dans-PersonalityEngine is a versatile model series
384
+ fine-tuned on 50+ specialized datasets, designed to
385
+ excel at both creative tasks (like roleplay and
386
+ co-writing) and technical challenges (such as code
387
+ generation, tool use, and complex reasoning).
388
+ </p>
389
+ <p>
390
+ V1.3.0 introduces multilingual capabilities with
391
+ support for 10 languages and enhanced domain
392
+ expertise across multiple fields. The primary
393
+ language is still English and that is where peak
394
+ performance can be expected.
395
+ </p>
396
+ <h3>Multilingual Support</h3>
397
+ <pre class="code-block">
398
+ Arabic Chinese English French German
399
+ Hindi Japanese Korean Portuguese Spanish</pre>
400
+ <h3>Key Details</h3>
401
+ <pre class="code-block">
402
+ BASE MODEL: mistralai/Mistral-Small-3.1-24B-Base-2503
403
+ LICENSE: apache-2.0
404
+ LANGUAGE: Multilingual with 10 supported languages
405
+ CONTEXT LENGTH: 32768 tokens, 131072 with degraded recall</pre>
406
+ <h3>Recommended Settings</h3>
407
+ <pre class="code-block">
408
+ TEMPERATURE: 1.0
409
+ TOP_P: 0.9</pre>
410
+ <h3>Prompting Format</h3>
411
+ <p>
412
+ The model uses the following format I'll refer to as
413
+ "DanChat-2":
414
+ </p>
415
+ <pre class="code-block">
416
+ <|system|>system prompt<|endoftext|><|user|>Hi there!<|endoftext|><|assistant|>Hey, how can I help?<|endoftext|></pre>
417
+ <h3>Why not ChatML?</h3>
418
+ <p>
419
+ While ChatML is a standard format for LLMs, it has
420
+ limitations. DanChat-2 uses special tokens
421
+ for each role, this reduces biases and helps the model adapt to different tasks more readily.
422
+ </p>
423
+ <h3>SillyTavern Template</h3>
424
+ <p>
425
+ <a
426
+ href="https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.3.0-24b/resolve/main/resources/DanChat-2.json?download=true"
427
+ download
428
+ target="_blank"
429
+ rel="noopener noreferrer"
430
+ >
431
+ Download Master JSON
432
+ </a>
433
+ </p>
434
+ <h3>Inference Provider</h3>
435
+ <p>
436
+ This model and others are available from ⚡Mancer AI for
437
+ those interested in high quality inference without
438
+ owning or renting expensive hardware.
439
+ </p>
440
+ <p class="mancer-button-container">
441
+ <a
442
+ href="https://mancer.tech/"
443
+ target="_blank"
444
+ rel="noopener noreferrer"
445
+ class="mancer-button"
446
+ >
447
+ <span class="mancer-text">mancer</span>
448
+ </a>
449
+ </p>
450
+ <h3>Training Process</h3>
451
+ <p>
452
+ The model was trained using Axolotl on 8x H100 GPUs
453
+ for 50 hours. The resources to train this model were provided by Prime Intellect and Kalomaze.
454
+ </p>
455
+ <h3>Support Development</h3>
456
+ <p>
457
+ Development is limited by funding and resources. To
458
+ help support:
459
+ </p>
460
+ <p>- Contact on HF</p>
461
+ <p>- Email: [email protected]</p>
462
+ <p class="coffee-container">
463
+ <a
464
+ href="https://www.buymeacoffee.com/visually"
465
+ target="_blank"
466
+ rel="noopener noreferrer"
467
+ >
468
+ <img
469
+ src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png"
470
+ alt="Buy Me A Coffee"
471
+ height="45"
472
+ width="162"
473
+ />
474
+ </a>
475
+ </p>
476
+ </div>
477
+ </div>
478
+ </div>
479
+ </div>
480
+ </div>
481
+ <style>
482
+ @import url("https://fonts.googleapis.com/css2?family=Consolas&display=swap");
483
+ .crt-container {
484
+ padding: 10px;
485
+ max-width: 1000px;
486
+ margin: 0 auto;
487
+ width: 95%;
488
+ }
489
+ .crt-case {
490
+ background: #e8d7c3;
491
+ border-radius: 10px;
492
+ padding: 15px;
493
+ box-shadow:
494
+ inset -2px -2px 5px rgba(0, 0, 0, 0.3),
495
+ 2px 2px 5px rgba(0, 0, 0, 0.2);
496
+ }
497
+ .crt-inner-case {
498
+ background: #e8d7c3;
499
+ border-radius: 8px;
500
+ padding: 3px;
501
+ box-shadow:
502
+ inset -1px -1px 4px rgba(0, 0, 0, 0.3),
503
+ 1px 1px 4px rgba(0, 0, 0, 0.2);
504
+ }
505
+ .crt-bezel {
506
+ background: linear-gradient(145deg, #1a1a1a, #2a2a2a);
507
+ padding: 15px;
508
+ border-radius: 5px;
509
+ border: 3px solid #0a0a0a;
510
+ position: relative;
511
+ box-shadow:
512
+ inset 0 0 20px rgba(0, 0, 0, 0.5),
513
+ inset 0 0 4px rgba(0, 0, 0, 0.4),
514
+ inset 2px 2px 4px rgba(255, 255, 255, 0.05),
515
+ inset -2px -2px 4px rgba(0, 0, 0, 0.8),
516
+ 0 0 2px rgba(0, 0, 0, 0.6),
517
+ -1px -1px 4px rgba(255, 255, 255, 0.1),
518
+ 1px 1px 4px rgba(0, 0, 0, 0.3);
519
+ }
520
+ .crt-bezel::before {
521
+ content: "";
522
+ position: absolute;
523
+ top: 0;
524
+ left: 0;
525
+ right: 0;
526
+ bottom: 0;
527
+ background: linear-gradient(
528
+ 45deg,
529
+ rgba(255, 255, 255, 0.03) 0%,
530
+ rgba(255, 255, 255, 0) 40%,
531
+ rgba(0, 0, 0, 0.1) 60%,
532
+ rgba(0, 0, 0, 0.2) 100%
533
+ );
534
+ border-radius: 3px;
535
+ pointer-events: none;
536
+ }
537
+ .terminal-screen {
538
+ background: #111112;
539
+ padding: 20px;
540
+ border-radius: 15px;
541
+ position: relative;
542
+ overflow: hidden;
543
+ font-family: "Consolas", monospace;
544
+ font-size: clamp(12px, 1.5vw, 16px);
545
+ color: #e49b3e;
546
+ line-height: 1.4;
547
+ text-shadow: 0 0 2px #e49b3e;
548
+ /* Removed animation: flicker 0.15s infinite; */
549
+ filter: brightness(1.1) contrast(1.1);
550
+ box-shadow:
551
+ inset 0 0 30px rgba(0, 0, 0, 0.9),
552
+ inset 0 0 8px rgba(0, 0, 0, 0.8),
553
+ 0 0 5px rgba(0, 0, 0, 0.6);
554
+ max-width: 80ch;
555
+ margin: 0 auto;
556
+ }
557
+ .terminal-screen h2,
558
+ .terminal-screen h3 {
559
+ font-size: clamp(16px, 2vw, 20px);
560
+ margin-bottom: 1em;
561
+ color: #e49b3e;
562
+ }
563
+ .terminal-screen pre.code-block {
564
+ font-size: clamp(10px, 1.3vw, 14px);
565
+ white-space: pre; /* Changed from pre-wrap to pre */
566
+ margin: 1em 0;
567
+ background-color: #1a1a1a;
568
+ padding: 1em;
569
+ border-radius: 4px;
570
+ color: #e49b3e;
571
+ overflow-x: auto; /* Added to enable horizontal scrolling */
572
+ }
573
+ .terminal-screen::before {
574
+ content: "";
575
+ position: absolute;
576
+ top: 0;
577
+ left: 0;
578
+ right: 0;
579
+ bottom: 0;
580
+ background:
581
+ linear-gradient(
582
+ rgba(18, 16, 16, 0) 50%,
583
+ rgba(0, 0, 0, 0.25) 50%
584
+ ),
585
+ url("");
586
+ background-size: 100% 2.5px;
587
+ /* Removed animation: scan 1s linear infinite; */
588
+ pointer-events: none;
589
+ z-index: 2;
590
+ }
591
+ .terminal-screen::after {
592
+ content: "";
593
+ position: absolute;
594
+ top: 0;
595
+ left: 0;
596
+ right: 0;
597
+ bottom: 0;
598
+ background: radial-gradient(
599
+ circle at center,
600
+ rgba(17, 17, 18, 0) 0%,
601
+ rgba(17, 17, 18, 0.2) 50%,
602
+ rgba(17, 17, 18, 0.15) 100%
603
+ );
604
+ border-radius: 20px;
605
+ /* Removed animation: vignette-pulse 3s infinite; */
606
+ pointer-events: none;
607
+ z-index: 1;
608
+ }
609
+ .terminal-screen details {
610
+ margin: 1em 0;
611
+ padding: 0.5em;
612
+ border: 1px solid #e49b3e;
613
+ border-radius: 4px;
614
+ }
615
+ .terminal-screen summary {
616
+ cursor: pointer;
617
+ font-weight: bold;
618
+ margin: -0.5em;
619
+ padding: 0.5em;
620
+ border-bottom: 1px solid #e49b3e;
621
+ color: #e49b3e;
622
+ }
623
+ .terminal-screen details[open] summary {
624
+ margin-bottom: 0.5em;
625
+ }
626
+ .badge-container,
627
+ .coffee-container {
628
+ text-align: center;
629
+ margin: 1em 0;
630
+ }
631
+ .badge-container img,
632
+ .coffee-container img {
633
+ max-width: 100%;
634
+ height: auto;
635
+ }
636
+ .terminal-screen a {
637
+ color: #e49b3e;
638
+ text-decoration: underline;
639
+ transition: opacity 0.2s;
640
+ }
641
+ .terminal-screen a:hover {
642
+ opacity: 0.8;
643
+ }
644
+ .terminal-screen strong,
645
+ .terminal-screen em {
646
+ color: #f0f0f0; /* off-white color for user/system messages */
647
+ }
648
+ .terminal-screen p {
649
+ color: #f0f0f0; /* off-white color for assistant responses */
650
+ }
651
+ .terminal-screen p,
652
+ .terminal-screen li {
653
+ color: #e49b3e;
654
+ }
655
+ .terminal-screen code,
656
+ .terminal-screen kbd,
657
+ .terminal-screen samp {
658
+ color: #e49b3e;
659
+ font-family: "Consolas", monospace;
660
+ text-shadow: 0 0 2px #e49b3e;
661
+ background-color: #1a1a1a;
662
+ padding: 0.2em 0.4em;
663
+ border-radius: 4px;
664
+ }
665
+ .terminal-screen pre.code-block,
666
+ .terminal-screen pre {
667
+ font-size: clamp(10px, 1.3vw, 14px);
668
+ white-space: pre; /* Changed from pre-wrap to pre */
669
+ margin: 1em 0;
670
+ background-color: #1a1a1a;
671
+ padding: 1em;
672
+ border-radius: 4px;
673
+ color: #e49b3e;
674
+ overflow-x: auto; /* Added to enable horizontal scrolling */
675
+ }
676
+ .mancer-button-container {
677
+ text-align: left;
678
+ margin: 1em 0;
679
+ }
680
+ .mancer-button {
681
+ display: inline-flex;
682
+ align-items: center;
683
+ gap: 8px;
684
+ background: #1a1a1a;
685
+ color: #e49b3e;
686
+ padding: 15px 15px;
687
+ border: 2px solid #e49b3e;
688
+ border-radius: 5px;
689
+ text-decoration: none !important;
690
+ box-shadow: 0 0 10px rgba(228, 155, 62, 0.3);
691
+ transition: all 0.3s ease;
692
+ position: relative;
693
+ }
694
+ .mancer-text {
695
+ font-family: "Consolas", monospace;
696
+ font-weight: bold;
697
+ font-size: 20px;
698
+ text-shadow: 0 0 2px #e49b3e;
699
+ line-height: 1;
700
+ display: inline-block;
701
+ margin-left: -4px;
702
+ margin-top: -2px;
703
+ }
704
+ .mancer-button::before {
705
+ content: "⚡";
706
+ display: inline-flex;
707
+ align-items: center;
708
+ justify-content: center;
709
+ font-size: 20px;
710
+ line-height: 1;
711
+ }
712
+ .mancer-button:hover {
713
+ background: #2a2a2a;
714
+ box-shadow: 0 0 15px rgba(228, 155, 62, 0.5);
715
+ text-shadow: 0 0 4px #e49b3e;
716
+ text-decoration: none !important;
717
+ }
718
+ </style>
719
+ </html>