Mvp-24 commited on
Commit
2249818
·
verified ·
1 Parent(s): 7db612f

Upload 11 files

Browse files

uploading models

.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: gemma
4
+ pipeline_tag: image-text-to-text
5
+ extra_gated_heading: Access PaliGemma on Hugging Face
6
+ extra_gated_prompt: To access PaliGemma on Hugging Face, you’re required to review
7
+ and agree to Google’s usage license. To do this, please ensure you’re logged-in
8
+ to Hugging Face and click below. Requests are processed immediately.
9
+ extra_gated_button_content: Acknowledge license
10
+ ---
11
+ # PaliGemma 2 model card
12
+
13
+ **Model page:** [PaliGemma](https://ai.google.dev/gemma/docs/paligemma)
14
+
15
+ Transformers PaliGemma 2 3B weights fine-tuned on a mixture of academic tasks using 448x448 input images.
16
+ PaliGemma 2 **mix** checkpoints are fine-tuned on a diverse set of tasks and are ready to use out of the box while **pt** checkpoints are pre-trained and intended for further fine-tuning. These tasks include short and long captioning, optical character recognition, question answering, object detection and segmentation, and more.
17
+ The model is available in the `bfloat16` format for research purposes only.
18
+
19
+ **Resources and technical documentation:**
20
+
21
+ * [PaliGemma 2 on Kaggle](https://www.kaggle.com/models/google/paligemma-2)
22
+ * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
23
+
24
+ **Terms of Use:** [Terms](https://ai.google.dev/gemma/terms)
25
+
26
+ **Authors:** Google
27
+
28
+ ## Model information
29
+
30
+ ### Model summary
31
+
32
+ PaliGemma 2 is an update of the [PaliGemma](https://arxiv.org/abs/2407.07726)
33
+ vision-language model (VLM) which incorporates the capabilities of the
34
+ [Gemma 2](https://arxiv.org/abs/2408.00118) models. The PaliGemma family of
35
+ models is inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and based on
36
+ open components such as the [SigLIP](https://arxiv.org/abs/2303.15343) vision
37
+ model and [Gemma 2](https://arxiv.org/abs/2408.00118) language models. It takes
38
+ both image and text as input and generates text as output, supporting multiple
39
+ languages. It is designed for class-leading fine-tune performance on a wide
40
+ range of vision-language tasks such as image and short video caption, visual
41
+ question answering, text reading, object detection and object segmentation.
42
+
43
+ #### Model architecture
44
+
45
+ PaliGemma 2 is the composition of a
46
+ [Transformer decoder](https://arxiv.org/abs/1706.03762) and a
47
+ [Vision Transformer image encoder](https://arxiv.org/abs/2010.11929).
48
+ The text decoder is initialized from
49
+ [Gemma 2](https://ai.google.dev/gemma/docs/base) in the 2B, 9B, and 27B
50
+ parameter sizes. The image encoder is initialized from
51
+ [SigLIP-So400m/14](https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP_demo.ipynb).
52
+ Similar to the original PaliGemma model, PaliGemma 2 is trained following the
53
+ [PaLI-3](https://arxiv.org/abs/2310.09199) recipes.
54
+
55
+ #### Inputs and outputs
56
+
57
+ * **Input:** Image and text string, such as a prompt to caption the image, or
58
+ a question.
59
+ * **Output:** Generated text in response to the input, such as a caption of
60
+ the image, an answer to a question, a list of object bounding box
61
+ coordinates, or segmentation codewords.
62
+
63
+ ### Model data
64
+
65
+ #### Pre-train datasets
66
+
67
+ PaliGemma 2 is pre-trained on the following mixture of datasets:
68
+
69
+ * **WebLI:** [WebLI (Web Language Image)](https://arxiv.org/abs/2209.06794) is
70
+ a web-scale multilingual image-text dataset built from the public web. A
71
+ wide range of WebLI splits are used to acquire versatile model capabilities,
72
+ such as visual semantic understanding, object localization,
73
+ visually-situated text understanding, and multilinguality.
74
+ * **CC3M-35L:** Curated English image-alt_text pairs from webpages
75
+ ([Sharma et al., 2018](https://aclanthology.org/P18-1238/)). We used the
76
+ [Google Cloud Translation API](https://cloud.google.com/translate) to
77
+ translate into 34 additional languages.
78
+ * **VQ²A-CC3M-35L/VQG-CC3M-35L:** A subset of VQ2A-CC3M
79
+ ([Changpinyo et al., 2022a](https://aclanthology.org/2022.naacl-main.142/)),
80
+ translated into the same additional 34 languages as CC3M-35L, using the
81
+ [Google Cloud Translation API](https://cloud.google.com/translate).
82
+ * **OpenImages:** Detection and object-aware questions and answers
83
+ ([Piergiovanni et al. 2022](https://arxiv.org/abs/2209.04372)) generated by
84
+ handcrafted rules on the [OpenImages dataset].
85
+ * **WIT:** Images and texts collected from Wikipedia
86
+ ([Srinivasan et al., 2021](https://arxiv.org/abs/2103.01913)).
87
+
88
+ [OpenImages dataset]: https://storage.googleapis.com/openimages/web/factsfigures_v7.html
89
+ PaliGemma 2 is based on Gemma 2, and you can find information on the
90
+ pre-training datasets for Gemma 2 in the
91
+ [Gemma 2 model card](https://ai.google.dev/gemma/docs/model_card_2).
92
+
93
+ #### Data responsibility filtering
94
+
95
+ The following filters are applied to WebLI, with the goal of training PaliGemma
96
+ 2 on safe and responsible data:
97
+
98
+ * **Pornographic image filtering:** This filter removes images deemed to be of
99
+ pornographic nature.
100
+ * **Text safety filtering:** We identify and filter out images that are paired
101
+ with unsafe text. Unsafe text is any text deemed to contain or be about
102
+ child sexual abuse imagery (CSAI), pornography, vulgarities, or is otherwise
103
+ offensive.
104
+ * **Text toxicity filtering:** We further use the [Perspective
105
+ API](https://perspectiveapi.com/) to identify and filter out images that are
106
+ paired with text deemed insulting, obscene, hateful or otherwise toxic.
107
+ * **Text personal information filtering:** We filtered certain personal
108
+ information and other sensitive data using the [Cloud Data Loss Prevention
109
+ (DLP) API](https://cloud.google.com/security/products/dlp) to protect the
110
+ privacy of individuals. Identifiers such as social security numbers and
111
+ [other sensitive information types] were removed.
112
+ * **Additional methods:** Filtering based on content quality and safety in
113
+ line with our policies and practices.
114
+
115
+ [other sensitive information types]: https://cloud.google.com/sensitive-data-protection/docs/high-sensitivity-infotypes-reference?_gl=1*jg604m*_ga*ODk5MzA3ODQyLjE3MTAzMzQ3NTk.*_ga_WH2QY8WWF5*MTcxMDUxNTkxMS4yLjEuMTcxMDUxNjA2NC4wLjAuMA..&_ga=2.172110058.-899307842.1710334759
116
+
117
+ ## Use in Transformers
118
+
119
+ You can use the following prompt templates to perform different tasks:
120
+ - `"cap {lang}"`: Raw short caption (from WebLI-alt)
121
+ - `"caption {lang}"`: Nice, COCO-like short captions
122
+ - `"describe {lang}"`: Longer, more descriptive captions
123
+ - `"ocr"`: Optical character recognition
124
+ - `"answer {lang} {question}"`: Question answering about the image contents
125
+ - `"question {lang} {answer}"`: Question generation for a given answer
126
+ - `"detect {object} ; {object}"`: Locate listed objects in an image and return the bounding boxes for those objects
127
+ - `"segment {object}"`: Locate the area occupied by the object in an image to create an image segmentation for that object
128
+
129
+
130
+ ```python
131
+ from transformers import (
132
+ PaliGemmaProcessor,
133
+ PaliGemmaForConditionalGeneration,
134
+ )
135
+ from transformers.image_utils import load_image
136
+ import torch
137
+
138
+ model_id = "google/paligemma2-3b-mix-448"
139
+
140
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
141
+ image = load_image(url)
142
+
143
+ model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval()
144
+ processor = PaliGemmaProcessor.from_pretrained(model_id)
145
+
146
+ prompt = "describe en"
147
+ model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device)
148
+ input_len = model_inputs["input_ids"].shape[-1]
149
+
150
+ with torch.inference_mode():
151
+ generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
152
+ generation = generation[0][input_len:]
153
+ decoded = processor.decode(generation, skip_special_tokens=True)
154
+ print(decoded)
155
+ ```
156
+
157
+ Here is a [notebook](https://github.com/merveenoyan/smol-vision/blob/main/Fine_tune_PaliGemma.ipynb)
158
+ that showcases fine-tuning PaliGemma 2.
159
+
160
+ ## Implementation information
161
+
162
+ ### Hardware
163
+
164
+ PaliGemma 2 was trained using the latest generation of Tensor Processing Unit
165
+ (TPU) hardware (TPUv5e).
166
+
167
+ ### Software
168
+
169
+ Training was completed using [JAX](https://github.com/google/jax),
170
+ [Flax](https://github.com/google/flax),
171
+ [TFDS](https://github.com/tensorflow/datasets) and
172
+ [`big_vision`](https://github.com/google-research/big_vision).
173
+
174
+ JAX allows researchers to take advantage of the latest generation of hardware,
175
+ including TPUs, for faster and more efficient training of large models.
176
+
177
+ TFDS is used to access datasets and Flax is used for model architecture. The
178
+ PaliGemma 2 fine-tune code and inference code are released in the `big_vision`
179
+ GitHub repository.
180
+
181
+ ## Evaluation information
182
+
183
+ ### Benchmark results
184
+
185
+ In order to verify the transferability of PaliGemma 2 to a wide variety of
186
+ academic tasks, we fine-tune the pretrained models on each task. We report results on
187
+ different resolutions to provide an impression of which tasks benefit from
188
+ increased resolution and which tasks benefit from larger models. Importantly, none of these tasks or datasets are part of
189
+ the pretraining data mixture, and their images are explicitly removed from the
190
+ web-scale pre-training data.
191
+
192
+ #### PaliGemma 2 results by model resolution and size
193
+
194
+ | Benchmark | 224-3B | 224-10B | 224-28B | 448-3B | 448-10B | 448-28B |
195
+ |-------------------------------|:------:|:-------:|:-------:|:------:|:-------:|:-------:|
196
+ | [AI2D][ai2d] | 74.7 | 83.1 | 83.2 | 76.0 | 84.4 | 84.6 |
197
+ | [AOKVQA-DA][aokvqa-da] (val) | 64.2 | 68.9 | 70.2 | 67.9 | 70.8 | 71.2 |
198
+ | [AOKVQA-MC][aokvqa-mc] (val) | 79.7 | 83.7 | 84.7 | 82.5 | 85.9 | 87.0 |
199
+ | [ActivityNet-CAP][anet-cap] | 34.2 | 35.9 | - | - | - | - |
200
+ | [ActivityNet-QA][anet-qa] | 51.3 | 53.2 | - | - | - | - |
201
+ | [COCO-35L][coco-35l] (avg34) | 113.9 | 115.8 | 116.5 | 115.8 | 117.2 | 117.2 |
202
+ | [COCO-35L][coco-35l] (en) | 138.4 | 140.8 | 142.4 | 140.4 | 142.4 | 142.3 |
203
+ | [COCOcap][coco-cap] | 141.3 | 143.7 | 144.0 | 143.4 | 145.0 | 145.2 |
204
+ | [ChartQA][chartqa] (aug) | 74.4 | 74.2 | 68.9 | 89.2 | 90.1 | 85.1 |
205
+ | [ChartQA][chartqa] (human) | 42.0 | 48.4 | 46.8 | 54.0 | 66.4 | 61.3 |
206
+ | [CountBenchQA][countbenchqa] | 81.0 | 84.0 | 86.4 | 82.0 | 85.3 | 87.4 |
207
+ | [DocVQA][docvqa] (val) | 39.9 | 43.9 | 44.9 | 73.6 | 76.6 | 76.1 |
208
+ | [GQA][gqa] | 66.2 | 67.2 | 67.3 | 68.1 | 68.3 | 68.3 |
209
+ | [InfoVQA][info-vqa] (val) | 25.2 | 33.6 | 36.4 | 37.5 | 47.8 | 46.7 |
210
+ | [MARVL][marvl] (avg5) | 83.5 | 89.5 | 90.6 | 82.7 | 89.1 | 89.7 |
211
+ | [MSRVTT-CAP][msrvtt] | 68.5 | 72.1 | - | - | - | - |
212
+ | [MSRVTT-QA][msrvtt] | 50.5 | 51.9 | - | - | - | - |
213
+ | [MSVD-QA][msvd-qa] | 61.1 | 62.5 | - | - | - | - |
214
+ | [NLVR2][nlvr2] | 91.4 | 93.9 | 94.2 | 91.6 | 93.7 | 94.1 |
215
+ | [NoCaps][nocaps] | 123.1 | 126.3 | 127.1 | 123.5 | 126.9 | 127.0 |
216
+ | [OCR-VQA][ocr-vqa] | 73.4 | 74.7 | 75.3 | 75.7 | 76.3 | 76.6 |
217
+ | [OKVQA][okvqa] | 64.2 | 68.0 | 71.2 | 64.1 | 68.6 | 70.6 |
218
+ | [RSVQA-hr][rsvqa-hr] (test) | 92.7 | 92.6 | 92.7 | 92.8 | 92.8 | 92.8 |
219
+ | [RSVQA-hr][rsvqa-hr] (test2) | 90.9 | 90.8 | 90.9 | 90.7 | 90.7 | 90.8 |
220
+ | [RSVQA-lr][rsvqa-lr] | 93.0 | 92.8 | 93.5 | 92.7 | 93.1 | 93.7 |
221
+ | [RefCOCO][refcoco] (testA) | 75.7 | 77.2 | 76.8 | 78.6 | 79.7 | 79.3 |
222
+ | [RefCOCO][refcoco] (testB) | 71.0 | 74.2 | 73.9 | 73.5 | 76.2 | 74.8 |
223
+ | [RefCOCO][refcoco] (val) | 73.4 | 75.9 | 75.0 | 76.3 | 78.2 | 77.3 |
224
+ | [RefCOCO+][refcoco+] (testA) | 72.7 | 74.7 | 73.6 | 76.1 | 77.7 | 76.6 |
225
+ | [RefCOCO+][refcoco+] (testB) | 64.2 | 68.4 | 67.1 | 67.0 | 71.1 | 68.6 |
226
+ | [RefCOCO+][refcoco+] (val) | 68.6 | 72.0 | 70.3 | 72.1 | 74.4 | 72.8 |
227
+ | [RefCOCOg][refcocog] (test) | 69.0 | 71.9 | 70.7 | 72.7 | 74.8 | 73.7 |
228
+ | [RefCOCOg][refcocog] (val) | 68.3 | 71.4 | 70.5 | 72.3 | 74.4 | 73.0 |
229
+ | [ST-VQA][st-vqa] (val) | 61.9 | 64.3 | 65.1 | 80.5 | 82.0 | 81.8 |
230
+ | [SciCap][scicap] | 165.1 | 159.5 | 156.9 | 183.3 | 177.2 | 172.7 |
231
+ | [ScienceQA][scienceqa] | 96.1 | 98.2 | 98.2 | 96.2 | 98.5 | 98.6 |
232
+ | [Screen2Words][screen2words] | 113.3 | 117.8 | 122.8 | 114.0 | 119.1 | 123.4 |
233
+ | [TallyQA][tallyqa] (complex) | 70.3 | 73.4 | 74.2 | 73.6 | 76.7 | 76.8 |
234
+ | [TallyQA][tallyqa] (simple) | 81.8 | 83.2 | 83.4 | 85.3 | 86.2 | 85.7 |
235
+ | [TextCaps][textcaps] | 127.5 | 137.9 | 139.9 | 152.1 | 157.7 | 153.6 |
236
+ | [TextVQA][textvqa] (val) | 59.6 | 64.0 | 64.7 | 75.2 | 76.6 | 76.2 |
237
+ | [VATEX][vatex] | 80.8 | 82.7 | - | - | - | - |
238
+ | [VQAv2][vqav2] (minival) | 83.0 | 84.3 | 84.5 | 84.8 | 85.8 | 85.8 |
239
+ | [VizWizVQA][vizwiz-vqa] (val) | 76.4 | 78.1 | 78.7 | 77.5 | 78.6 | 78.9 |
240
+ | [WidgetCap][widgetcap] | 138.1 | 139.8 | 138.8 | 151.4 | 151.9 | 148.9 |
241
+ | [XM3600][xm3600] (avg35) | 42.8 | 44.5 | 45.2 | 43.2 | 44.6 | 45.2 |
242
+ | [XM3600][xm3600] (en) | 79.8 | 80.7 | 81.0 | 80.3 | 81.5 | 81.0 |
243
+ | [xGQA][xgqa] (avg7) | 58.6 | 61.4 | 61.1 | 60.4 | 62.6 | 62.1 |
244
+
245
+
246
+ #### Additional Benchmarks
247
+
248
+ **[ICDAR 2015 Incidental][icdar2015-inc]**
249
+
250
+ | Model | Precision | Recall | F1 |
251
+ |-----------------|-----------|:------:|:-----:|
252
+ | PaliGemma 2 3B | 81.9 | 70.7 | 75.9 |
253
+
254
+ **[Total-Text][total-text]**
255
+
256
+ | Model | Precision | Recall | F1 |
257
+ |-----------------|-----------|:------:|:-----:|
258
+ | PaliGemma 2 3B | 73.8 | 74.5 | 74.2 |
259
+
260
+ **[FinTabNet][fintabnet]**
261
+
262
+ | Model | S-TEDS | TEDS | GriTS-Top | GriTS-Con |
263
+ |-----------------|--------|-------|-----------|-----------|
264
+ | PaliGemma 2 3B | 99.2 | 98.9 | 99.4 | 99.2 |
265
+
266
+ **[PubTabNet][pubtabnet]**
267
+
268
+ | Model | S-TEDS | TEDS | GriTS-Top | GriTS-Con |
269
+ |-----------------|--------|-------|-----------|-----------|
270
+ | PaliGemma 2 3B | 97.6 | 97.3 | 97.9 | 97.8 |
271
+
272
+ **[GrandStaff][grandstaff]**
273
+
274
+ | Model | CER | LER | SER |
275
+ |-----------------|-----|-----|-----|
276
+ | PaliGemma 2 3B | 1.6 | 6.7 | 2.3 |
277
+
278
+ **[PubChem][pubchem]**
279
+
280
+ * PaliGemma 2 3B, Full Match: 94.8
281
+
282
+ **[DOCCI][docci]**
283
+
284
+ | Model | avg#char | avg#sent | NES % |
285
+ |-----------------|----------|----------|---------|
286
+ | PaliGemma 2 3B | 529 | 7.7 | 28.4 |
287
+ | PaliGemma 2 10B | 521 | 7.5 | 20.3 |
288
+
289
+ - *avg#char*: Average number of characters
290
+ - *avg#sent*: Average number of sentences
291
+ - *NES*: Non entailment sentences
292
+
293
+ **[MIMIC-CXR][mimic-cxr]**
294
+
295
+ | Model | CIDEr | BLEU4 | Rouge-L | RadGraph F1 |
296
+ |-----------------|-------|-------|---------|-------------|
297
+ | PaliGemma 2 3B | 19.9 | 14.6 | 31.9 | 28.8 |
298
+ | PaliGemma 2 10B | 17.4 | 15.0 | 32.4 | 29.5 |
299
+
300
+ **[Visual Spatial Reasoning][vsr]**
301
+
302
+ | Model | VSR zeroshot split (test) | VSR random split (test) |
303
+ |-----------------|---------------------------|--------------------------|
304
+ | PaliGemma 2 3B | 74.8 | 81.6 |
305
+ | PaliGemma 2 10B | 79.8 | 86.8 |
306
+
307
+ ## Ethics and safety
308
+
309
+ ### Evaluation approach
310
+
311
+ Our evaluation methods include structured ethics and safety evaluations across
312
+ relevant content policies, including:
313
+
314
+ * Human evaluation on prompts covering child safety, content safety and
315
+ representational harms. See the [Gemma model
316
+ card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for
317
+ more details on evaluation approach, but with image captioning and visual
318
+ question answering setups.
319
+ * Image-to-Text benchmark evaluation: Benchmark against relevant academic
320
+ datasets such as FairFace Dataset ([Karkkainen et al.,
321
+ 2021](https://arxiv.org/abs/1908.04913)).
322
+
323
+ ### Evaluation results
324
+
325
+ * The human evaluation results of ethics and safety evaluations are within
326
+ acceptable thresholds for meeting [internal
327
+ policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11)
328
+ for categories such as child safety, content safety and representational
329
+ harms.
330
+ * On top of robust internal evaluations, we also use the Perspective API
331
+ (threshold of 0.8) to measure toxicity, profanity, and other potential
332
+ issues in the generated captions for images sourced from the FairFace
333
+ dataset. We report the maximum and median values observed across subgroups
334
+ for each of the perceived gender, ethnicity, and age attributes.
335
+
336
+ <table>
337
+ <tr>
338
+ <col>
339
+ <colgroup span="3"></colgroup>
340
+ <colgroup span="3"></colgroup>
341
+ <colgroup span="3"></colgroup>
342
+ <th>Metric</th>
343
+ <th colspan="3" scope="colgroup">Perceived gender</th>
344
+ <th colspan="3" scope="colgroup">Ethnicity</th>
345
+ <th colspan="3" scope="colgroup">Age group</th>
346
+ </tr>
347
+ <tr>
348
+ <th>Model size</th>
349
+ <th scope="col">3B</th>
350
+ <th scope="col">10B</th>
351
+ <th scope="col">28B</th>
352
+ <th scope="col">3B</th>
353
+ <th scope="col">10B</th>
354
+ <th scope="col">28B</th>
355
+ <th scope="col">3B</th>
356
+ <th scope="col">10B</th>
357
+ <th scope="col">28B</th>
358
+ </tr>
359
+ <tr>
360
+ <th></th>
361
+ <th colspan="9" scope="colgroup">Maximum</th>
362
+ </tr>
363
+ <tr>
364
+ <td>Toxicity</td>
365
+ <td>0.14%</td>
366
+ <td>0.15%</td>
367
+ <td>0.19%</td>
368
+ <td>0.29%</td>
369
+ <td>0.39%</td>
370
+ <td>0.39%</td>
371
+ <td>0.26%</td>
372
+ <td>0.18%</td>
373
+ <td>0.32%</td>
374
+ </tr>
375
+ <tr>
376
+ <td>Identity Attack</td>
377
+ <td>0.04%</td>
378
+ <td>0.02%</td>
379
+ <td>0.02%</td>
380
+ <td>0.13%</td>
381
+ <td>0.06%</td>
382
+ <td>0.06%</td>
383
+ <td>0.06%</td>
384
+ <td>0.03%</td>
385
+ <td>0.06%</td>
386
+ </tr>
387
+ <tr>
388
+ <td>Insult</td>
389
+ <td>0.17%</td>
390
+ <td>0.25%</td>
391
+ <td>0.17%</td>
392
+ <td>0.37%</td>
393
+ <td>0.52%</td>
394
+ <td>0.52%</td>
395
+ <td>0.27%</td>
396
+ <td>0.39%</td>
397
+ <td>0.24%</td>
398
+ </tr>
399
+ <tr>
400
+ <td>Threat</td>
401
+ <td>0.55%</td>
402
+ <td>0.43%</td>
403
+ <td>0.57%</td>
404
+ <td>0.83%</td>
405
+ <td>0.48%</td>
406
+ <td>0.48%</td>
407
+ <td>0.64%</td>
408
+ <td>0.43%</td>
409
+ <td>0.64%</td>
410
+ </tr>
411
+ <tr>
412
+ <td>Profanity</td>
413
+ <td>0.00%</td>
414
+ <td>0.00%</td>
415
+ <td>0.00%</td>
416
+ <td>0.00%</td>
417
+ <td>0.00%</td>
418
+ <td>0.00%</td>
419
+ <td>0.00%</td>
420
+ <td>0.00%</td>
421
+ <td>0.00%</td>
422
+ </tr>
423
+ <tr>
424
+ <th></th>
425
+ <th colspan="9" scope="colgroup">Median</th>
426
+ </tr>
427
+ <tr>
428
+ <td>Toxicity</td>
429
+ <td>0.13%</td>
430
+ <td>0.10%</td>
431
+ <td>0.18%</td>
432
+ <td>0.07%</td>
433
+ <td>0.07%</td>
434
+ <td>0.14%</td>
435
+ <td>0.12%</td>
436
+ <td>0.08%</td>
437
+ <td>0.12%</td>
438
+ </tr>
439
+ <tr>
440
+ <td>Identity Attack</td>
441
+ <td>0.02%</td>
442
+ <td>0.01%</td>
443
+ <td>0.02%</td>
444
+ <td>0.00%</td>
445
+ <td>0.00%</td>
446
+ <td>0.00%</td>
447
+ <td>0.00%</td>
448
+ <td>0.00%</td>
449
+ <td>0.00%</td>
450
+ </tr>
451
+ <tr>
452
+ <td>Insult</td>
453
+ <td>0.15%</td>
454
+ <td>0.23%</td>
455
+ <td>0.14%</td>
456
+ <td>0.14%</td>
457
+ <td>0.17%</td>
458
+ <td>0.13%</td>
459
+ <td>0.09%</td>
460
+ <td>0.18%</td>
461
+ <td>0.16%</td>
462
+ </tr>
463
+ <tr>
464
+ <td>Threat</td>
465
+ <td>0.35%</td>
466
+ <td>0.27%</td>
467
+ <td>0.41%</td>
468
+ <td>0.28%</td>
469
+ <td>0.19%</td>
470
+ <td>0.42%</td>
471
+ <td>0.27%</td>
472
+ <td>0.31%</td>
473
+ <td>0.40%</td>
474
+ </tr>
475
+ <tr>
476
+ <td>Profanity</td>
477
+ <td>0.00%</td>
478
+ <td>0.00%</td>
479
+ <td>0.00%</td>
480
+ <td>0.00%</td>
481
+ <td>0.00%</td>
482
+ <td>0.00%</td>
483
+ <td>0.00%</td>
484
+ <td>0.00%</td>
485
+ <td>0.00%</td>
486
+ </tr>
487
+ </table>
488
+
489
+ ## Usage and limitations
490
+
491
+ ### Intended usage
492
+
493
+ Open Vision Language Models (VLMs) have a wide range of applications across
494
+ various industries and domains. The following list of potential uses is not
495
+ comprehensive. The purpose of this list is to provide contextual information
496
+ about the possible use-cases that the model creators considered as part of model
497
+ training and development. Prohibited uses of Gemma models are outlined in the
498
+ [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
499
+
500
+ Fine-tune on specific vision-language task:
501
+
502
+ * The pre-trained models can be fine-tuned on a wide range of vision-language
503
+ tasks such as: image captioning, short video caption, visual question
504
+ answering, text reading, object detection and object segmentation.
505
+ * The pre-trained models can be fine-tuned for specific domains such as remote
506
+ sensing question answering, visual questions from people who are blind,
507
+ science question answering, describe UI element functionalities.
508
+ * The pre-trained models can be fine-tuned for tasks with non-textual outputs
509
+ such as bounding boxes or segmentation masks.
510
+
511
+ Vision-language research:
512
+
513
+ * The pre-trained models and fine-tuned models can serve as a foundation for
514
+ researchers to experiment with VLM techniques, develop algorithms, and
515
+ contribute to the advancement of the field.
516
+
517
+ ### Ethical considerations and risks
518
+
519
+ The development of vision-language models (VLMs) raises several ethical
520
+ concerns. In creating an open model, we have carefully considered the following:
521
+
522
+ * Bias and Fairness
523
+ * VLMs trained on large-scale, real-world image-text data can reflect
524
+ socio-cultural biases embedded in the training material. These models
525
+ underwent careful scrutiny, input data pre-processing described and
526
+ posterior evaluations reported in this card.
527
+ * Misinformation and Misuse
528
+ * VLMs can be misused to generate text that is false, misleading, or
529
+ harmful.
530
+ * Guidelines are provided for responsible use with the model, see the
531
+ [Responsible Generative AI Toolkit](https://ai.google.dev/responsible).
532
+ * Transparency and Accountability
533
+ * This model card summarizes details on the models' architecture,
534
+ capabilities, limitations, and evaluation processes.
535
+ * A responsibly developed open model offers the opportunity to share
536
+ innovation by making VLM technology accessible to developers and
537
+ researchers across the AI ecosystem.
538
+
539
+ Risks identified and mitigations:
540
+
541
+ * **Perpetuation of biases:** It's encouraged to perform continuous monitoring
542
+ (using evaluation metrics, human review) and the exploration of de-biasing
543
+ techniques during model training, fine-tuning, and other use cases.
544
+ * **Generation of harmful content:** Mechanisms and guidelines for content
545
+ safety are essential. Developers are encouraged to exercise caution and
546
+ implement appropriate content safety safeguards based on their specific
547
+ product policies and application use cases.
548
+ * **Misuse for malicious purposes:** Technical limitations and developer and
549
+ end-user education can help mitigate against malicious applications of LLMs.
550
+ Educational resources and reporting mechanisms for users to flag misuse are
551
+ provided: see the [Responsible Generative AI Toolkit](https://ai.google.dev/responsible).
552
+ Prohibited uses of Gemma models are outlined in the
553
+ [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
554
+ * **Privacy violations:** Models were trained on data filtered to remove
555
+ certain personal information and sensitive data. Developers are encouraged
556
+ to adhere to privacy regulations with privacy-preserving techniques.
557
+
558
+ ### Limitations
559
+
560
+ * Most limitations inherited from the underlying Gemma 2 models still apply:
561
+ * VLMs are better at tasks that can be framed with clear prompts and
562
+ instructions. Open-ended or highly complex tasks might be challenging.
563
+ * Natural language is inherently complex. VLMs might struggle to grasp
564
+ subtle nuances, sarcasm, or figurative language.
565
+ * VLMs generate responses based on information they learned from their
566
+ training datasets, but they are not knowledge bases. They may generate
567
+ incorrect or outdated factual statements.
568
+ * VLMs rely on statistical patterns in language and images. They might
569
+ lack the ability to apply common sense reasoning in certain situations.
570
+ * PaliGemma 2 was designed first and foremost to serve as a general
571
+ pre-trained model for fine-tuning to specialized tasks. Hence, its "out of
572
+ the box" or "zero-shot" performance might lag behind models designed
573
+ specifically for general purpose use.
574
+ * PaliGemma 2 is not a multi-turn chatbot. It is designed for a single round
575
+ of image and text input.
576
+
577
+
578
+ [ai2d]: https://allenai.org/data/diagrams
579
+ [aokvqa-da]: https://allenai.org/project/a-okvqa/home
580
+ [aokvqa-mc]: https://allenai.org/project/a-okvqa/home
581
+ [anet-cap]: https://paperswithcode.com/dataset/activitynet-captions
582
+ [anet-qa]: https://arxiv.org/abs/1906.02467
583
+ [chartqa]: https://arxiv.org/abs/2203.10244
584
+ [coco-35l]: https://arxiv.org/pdf/2205.12522
585
+ [coco-cap]: https://cocodataset.org/#home
586
+ [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/
587
+ [docvqa]: https://www.docvqa.org/
588
+ [gqa]: https://cs.stanford.edu/people/dorarad/gqa/about.html
589
+ [info-vqa]: https://arxiv.org/abs/2104.12756
590
+ [marvl]: https://marvl-challenge.github.io/
591
+ [msrvtt]: https://paperswithcode.com/dataset/msr-vtt
592
+ [msvd-qa]: https://paperswithcode.com/dataset/msvd-qa
593
+ [nlvr2]: https://lil.nlp.cornell.edu/nlvr/
594
+ [nocaps]: https://nocaps.org/
595
+ [ocr-vqa]: https://ocr-vqa.github.io/
596
+ [okvqa]: https://okvqa.allenai.org/
597
+ [refcoco]: https://arxiv.org/abs/1608.00272
598
+ [refcoco+]: https://aclanthology.org/D14-1086
599
+ [refcocog]: https://arxiv.org/abs/1511.02283
600
+ [rsvqa-hr]: https://zenodo.org/records/6344367
601
+ [rsvqa-lr]: https://zenodo.org/records/6344334
602
+ [st-vqa]: https://arxiv.org/abs/1905.13648
603
+ [scicap]: https://arxiv.org/abs/2110.11624
604
+ [scienceqa]: https://scienceqa.github.io/
605
+ [screen2words]: https://arxiv.org/abs/2108.03353
606
+ [tallyqa]: https://arxiv.org/abs/1810.12440
607
+ [textcaps]: https://textvqa.org/textcaps/
608
+ [textvqa]: https://textvqa.org/
609
+ [vatex]: https://arxiv.org/abs/1904.03493
610
+ [vizwiz-vqa]: https://vizwiz.org/tasks-and-datasets/vqa/
611
+ [widgetcap]: https://arxiv.org/abs/2010.04295
612
+ [vqav2]: https://visualqa.org/index.html
613
+ [xgqa]: https://aclanthology.org/2022.findings-acl.196/
614
+ [xm3600]: https://arxiv.org/pdf/2205.12522
615
+
616
+ [icdar2015-inc]: https://arxiv.org/abs/1511.09207
617
+ [total-text]: https://paperswithcode.com/paper/total-text-a-comprehensive-dataset-for-scene
618
+ [fintabnet]: https://developer.ibm.com/data/fintabnet/
619
+ [pubtabnet]: https://paperswithcode.com/dataset/pubtabnet
620
+ [grandstaff]: https://link.springer.com/article/10.1007/s10032-023-00432-z
621
+ [pubchem]: https://pmc.ncbi.nlm.nih.gov/articles/PMC7352161/
622
+ [docci]: https://research.google/pubs/docci-descriptions-of-connected-and-contrasting-images/
623
+ [mimic-cxr]: https://paperswithcode.com/dataset/mimic-cxr
624
+ [vsr]: https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00566/116470/Visual-Spatial-Reasoning
625
+
626
+
627
+ ## Citation
628
+
629
+ ```bibtex
630
+ @article{
631
+ title={PaliGemma 2: A Family of Versatile VLMs for Transfer},
632
+ author={Andreas Steiner and André Susano Pinto and Michael Tschannen and Daniel Keysers and Xiao Wang and Yonatan Bitton and Alexey Gritsenko and Matthias Minderer and Anthony Sherbondy and Shangbang Long and Siyang Qin and Reeve Ingle and Emanuele Bugliarello and Sahar Kazemzadeh and Thomas Mesnard and Ibrahim Alabdulmohsin and Lucas Beyer and Xiaohua Zhai},
633
+ year={2024},
634
+ journal={arXiv preprint arXiv:2412.03555}
635
+ }
636
+ ```
637
+
638
+
639
+ Find the paper [here](https://arxiv.org/abs/2412.03555).
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "PaliGemmaForConditionalGeneration"
4
+ ],
5
+ "model_type": "paligemma",
6
+ "hidden_size": 4096,
7
+ "image_size": 448,
8
+ "use_flash_attention": false,
9
+ "vocab_size": 257152
10
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": 1,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.47.0.dev0"
8
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fd069b5ae0121f20d52e2077ef7c8dd13852ea1e03c6800ef968eb91ef0a434
3
+ size 4995089032
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56117fdef68235a056bf20626be069e605d82d1e147051c3ae78f49e512351d2
3
+ size 1071263816
model.safetensors.index.json ADDED
@@ -0,0 +1,734 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6066254304
4
+ },
5
+ "weight_map": {
6
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
70
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
71
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "language_model.model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "language_model.model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
87
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
88
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "language_model.model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "language_model.model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
91
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
92
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
93
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
94
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
95
+ "language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
97
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
98
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
99
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "language_model.model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
101
+ "language_model.model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "language_model.model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "language_model.model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
114
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
115
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
116
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
117
+ "language_model.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
119
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
120
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
121
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
122
+ "language_model.model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
123
+ "language_model.model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
124
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
125
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
126
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
127
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
130
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
131
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
132
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
133
+ "language_model.model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
134
+ "language_model.model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
136
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
137
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "language_model.model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "language_model.model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
146
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
150
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
151
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
152
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "language_model.model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
167
+ "language_model.model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
168
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
169
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
170
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
171
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
172
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
173
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
174
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
175
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
176
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "language_model.model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
178
+ "language_model.model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
179
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
180
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
181
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
182
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
183
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
185
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
186
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
187
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "language_model.model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "language_model.model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
190
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
191
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
192
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
193
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
194
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
196
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
197
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
198
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
199
+ "language_model.model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "language_model.model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
202
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
203
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
204
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
205
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
206
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
207
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
208
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
209
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
210
+ "language_model.model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
211
+ "language_model.model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
213
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
214
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
215
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
216
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
218
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
219
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
220
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "language_model.model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
222
+ "language_model.model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
223
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
224
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
225
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
226
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
227
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
229
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
230
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
231
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
232
+ "language_model.model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "language_model.model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
235
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
236
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
237
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
238
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
239
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
240
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
241
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
242
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "language_model.model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
244
+ "language_model.model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
245
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
246
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
247
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
248
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
249
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
250
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
251
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
252
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
253
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
254
+ "language_model.model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
255
+ "language_model.model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "language_model.model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
266
+ "language_model.model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
267
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
268
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
269
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "language_model.model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
277
+ "language_model.model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
278
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
279
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
280
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
282
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
284
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
285
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
286
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
287
+ "language_model.model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "language_model.model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
292
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
293
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
294
+ "multi_modal_projector.linear.bias": "model-00001-of-00002.safetensors",
295
+ "multi_modal_projector.linear.weight": "model-00001-of-00002.safetensors",
296
+ "vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
297
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
298
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
299
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
300
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
301
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
302
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
303
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
304
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
305
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
306
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
307
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
308
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
309
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
310
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
311
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
312
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
313
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
314
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
315
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
316
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
317
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
318
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
319
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
320
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
321
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
322
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
323
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
324
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
325
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
326
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
327
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
332
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
333
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
334
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
335
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
336
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
337
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
338
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
339
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
340
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
341
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
342
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
343
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
344
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
345
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
346
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
347
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
348
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
349
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
350
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
351
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
352
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
353
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
354
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
355
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
356
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
357
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
358
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
359
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
360
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
361
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
362
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
363
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
364
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
365
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
366
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
367
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
368
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
369
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
370
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
371
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
372
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
373
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
374
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
375
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
380
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
381
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
382
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
383
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
384
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
385
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
386
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
387
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
388
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
389
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
390
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
391
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
392
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
393
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
394
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
395
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
396
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
397
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
398
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
399
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
400
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
401
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
402
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
403
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
404
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
405
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
406
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
407
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
408
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
409
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
410
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
411
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
412
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
413
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
414
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
415
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
416
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
417
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
418
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
419
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
420
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
421
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
422
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
423
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
428
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
429
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
430
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
431
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
432
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
433
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
434
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
435
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
436
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
437
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
438
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
439
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
440
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
441
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
442
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
443
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
444
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
445
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
446
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
447
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
448
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
449
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
450
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
451
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
452
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
453
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
454
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
455
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
456
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
457
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
458
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
459
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
460
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
461
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
462
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
463
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
464
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
465
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
466
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
467
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
468
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
469
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
470
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
471
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
472
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
473
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
474
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
475
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
476
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
477
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
478
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
479
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
480
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
481
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
482
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
483
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
484
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
485
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
486
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
487
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
488
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
489
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
490
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
491
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
492
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
493
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
494
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
495
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
496
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
497
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
498
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
499
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
500
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
501
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
502
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
503
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
504
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
505
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
506
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
507
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
508
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
509
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
510
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
511
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
512
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
513
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
514
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
515
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
516
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
517
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
518
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
519
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
520
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
521
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
522
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
523
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
524
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
525
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
526
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
527
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
528
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
529
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
530
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
531
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
532
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
533
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
534
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
535
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
536
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
537
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
538
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
539
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
540
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
541
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
542
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
543
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
544
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
545
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
546
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
547
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
548
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
549
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
550
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
551
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
552
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
553
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
554
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
555
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
556
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
557
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
558
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
559
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
560
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
561
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
562
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
563
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
564
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
565
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
566
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
567
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
568
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
569
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
570
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
571
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
572
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
573
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
574
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
575
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
576
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
577
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
578
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
579
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
580
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
581
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
582
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
583
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
584
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
585
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
586
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
587
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
588
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
589
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
590
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
591
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
592
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
593
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
594
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
595
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
596
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
597
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
598
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
599
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
600
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
601
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
602
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
603
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
604
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
605
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
606
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
607
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
608
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
609
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
610
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
611
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
612
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
613
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
614
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
615
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
616
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
617
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
618
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
619
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
620
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
621
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
622
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
623
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
624
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
625
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
626
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
627
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
628
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
629
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
630
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
631
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
632
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
633
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
634
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
635
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
636
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
637
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
638
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
639
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
640
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
641
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
642
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
643
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
644
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
645
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
646
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
647
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
648
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
649
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
650
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
651
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
652
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
653
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
654
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
655
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
656
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
657
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
658
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
659
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
660
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
661
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
662
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
663
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
664
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
665
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
666
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
667
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
668
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
669
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
670
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
671
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
672
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
673
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
674
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
675
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
676
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
677
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
678
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
679
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
680
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
681
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
682
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
683
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
684
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
685
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
686
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
687
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
688
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
689
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
690
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
691
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
692
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
693
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
694
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
695
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
696
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
697
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
698
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
699
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
700
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
701
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
702
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
703
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
704
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
705
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
706
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
707
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
708
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
709
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
710
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
711
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
712
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
713
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
714
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
715
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
716
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
717
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
718
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
719
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
720
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
721
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
722
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
723
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
724
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
725
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
726
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
727
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
728
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
729
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
730
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
731
+ "vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
732
+ "vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors"
733
+ }
734
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_seq_length": 1024,
13
+ "image_std": [
14
+ 0.5,
15
+ 0.5,
16
+ 0.5
17
+ ],
18
+ "processor_class": "PaliGemmaProcessor",
19
+ "resample": 3,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 448,
23
+ "width": 448
24
+ }
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<image>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<bos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<eos>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<pad>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "unk_token": {
33
+ "content": "<unk>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:172fab587d68c56b63eb3620057c62dfd15e503079ff7fce584692e3fd5bf4da
3
+ size 34600820
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8986bb4f423f07f8c7f70d0dbe3526fb2316056c17bae71b1ea975e77a168fc6
3
+ size 4264023
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff