File size: 1,926 Bytes
e7784d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- qwen2.5
- lora
- fine-tuned
- nxp
- imx93
- embedded
language:
- zh
- en
pipeline_tag: text-generation
---
# Qwen2.5-1.5B Fine-tuned for i.MX93 SoC | i.MX93 专用微调模型
## 模型简介 | Model Description
基于 Qwen2.5-1.5B-Instruct 微调的 i.MX93 SoC 技术文档专用模型。擅长回答寄存器配置、引脚复用、时钟设置等技术问题。
Fine-tuned Qwen2.5-1.5B-Instruct model specialized for NXP i.MX93 SoC technical documentation. Expert in register configuration, pin multiplexing, clock settings, and technical Q&A.
## 使用方法 | Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("NXPKEN/qwen25-1.5b-imx93-lora")
model = AutoModelForCausalLM.from_pretrained("NXPKEN/qwen25-1.5b-imx93-lora", torch_dtype=torch.float16, device_map="auto")
messages = [{"role": "system", "content": "You are an i.MX93 SoC expert."}, {"role": "user", "content": "如何配置 LPUART3?"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.2)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## 专业领域 | Specialties
- GPIO 配置和引脚复用 | GPIO configuration and pin multiplexing
- UART/SPI/I2C 通信设置 | Communication interfaces setup
- 时钟系统配置 | Clock system configuration
- 寄存器位字段解释 | Register bit field explanations
## 训练信息 | Training Info
- **方法 | Method**: LoRA (Low-Rank Adaptation)
- **环境 | Environment**: Windows 11 + RTX 2000 Ada (8GB)
- **数据 | Data**: i.MX93 技术问答数据集
## 许可证 | License
Apache 2.0 |