--- license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - qwen2.5 - lora - fine-tuned - nxp - imx93 - embedded language: - zh - en pipeline_tag: text-generation --- # Qwen2.5-1.5B Fine-tuned for i.MX93 SoC | i.MX93 专用微调模型 ## 模型简介 | Model Description 基于 Qwen2.5-1.5B-Instruct 微调的 i.MX93 SoC 技术文档专用模型。擅长回答寄存器配置、引脚复用、时钟设置等技术问题。 Fine-tuned Qwen2.5-1.5B-Instruct model specialized for NXP i.MX93 SoC technical documentation. Expert in register configuration, pin multiplexing, clock settings, and technical Q&A. ## 使用方法 | Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("NXPKEN/qwen25-1.5b-imx93-lora") model = AutoModelForCausalLM.from_pretrained("NXPKEN/qwen25-1.5b-imx93-lora", torch_dtype=torch.float16, device_map="auto") messages = [{"role": "system", "content": "You are an i.MX93 SoC expert."}, {"role": "user", "content": "如何配置 LPUART3?"}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.2) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## 专业领域 | Specialties - GPIO 配置和引脚复用 | GPIO configuration and pin multiplexing - UART/SPI/I2C 通信设置 | Communication interfaces setup - 时钟系统配置 | Clock system configuration - 寄存器位字段解释 | Register bit field explanations ## 训练信息 | Training Info - **方法 | Method**: LoRA (Low-Rank Adaptation) - **环境 | Environment**: Windows 11 + RTX 2000 Ada (8GB) - **数据 | Data**: i.MX93 技术问答数据集 ## 许可证 | License Apache 2.0