AdithyaSK commited on
Commit
0a5fbb1
·
verified ·
1 Parent(s): d9ad5ce

Upload examples.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. examples.py +56 -0
examples.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
3
+ from PIL import Image
4
+
5
+ path = "nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1"
6
+ model = AutoModel.from_pretrained(
7
+ path,
8
+ torch_dtype=torch.bfloat16,
9
+ low_cpu_mem_usage=True,
10
+ trust_remote_code=True,
11
+ device_map="cuda",).eval()
12
+
13
+ tokenizer = AutoTokenizer.from_pretrained(path)
14
+ image_processor = AutoImageProcessor.from_pretrained(path, device="cuda", trust_remote_code=True)
15
+
16
+ generation_config = dict(max_new_tokens=1024, do_sample=False, eos_token_id=tokenizer.eos_token_id)
17
+
18
+ # pure-text conversation
19
+ question = 'What happened in 1986?'
20
+ response, history = model.chat(
21
+ tokenizer, None, question, generation_config, history=None, return_history=True
22
+ )
23
+ print(f'User: {question}\nAssistant: {response}')
24
+
25
+ # single-image single-round conversation
26
+ image_path = 'images/table.png'
27
+ image_features = image_processor(Image.open(image_path))
28
+ question = '<image>\nExtract the table in this image as HTML.'
29
+ response = model.chat(
30
+ tokenizer=tokenizer, question=question, generation_config=generation_config,
31
+ **image_features
32
+ )
33
+ print(f'User: {question}\nAssistant: {response}')
34
+
35
+ # single-image single-round conversation
36
+ image_path = 'images/tech.png'
37
+ image_features = image_processor(Image.open(image_path))
38
+ question = '<image>\nList in bullet point the most important Technological breakthrough of Nvidia Hopper.'
39
+ response = model.chat(
40
+ tokenizer=tokenizer, question=question, generation_config=generation_config,
41
+ **image_features
42
+ )
43
+ print(f'User: {question}\nAssistant: {response}')
44
+
45
+ # two image single-round conversation
46
+ image_features = image_processor([
47
+ Image.open('images/example1a.jpeg'),
48
+ Image.open('images/example1b.jpeg')
49
+ ])
50
+
51
+ question = '<image-1>: <image>\n<image-2>: <image>\nBriefly describe the two images.'
52
+ response = model.chat(
53
+ tokenizer=tokenizer, question=question, generation_config=generation_config,
54
+ **image_features
55
+ )
56
+ print(f'User: {question}\nAssistant: {response}')