|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition""" | 
					
						
						|  |  | 
					
						
						|  | import functools | 
					
						
						|  | import json | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import sys | 
					
						
						|  | import warnings | 
					
						
						|  | from dataclasses import dataclass, field | 
					
						
						|  | from typing import Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from datasets import DatasetDict, load_dataset, load_metric | 
					
						
						|  |  | 
					
						
						|  | import transformers | 
					
						
						|  | from transformers import ( | 
					
						
						|  | AutoConfig, | 
					
						
						|  | AutoFeatureExtractor, | 
					
						
						|  | AutoModelForCTC, | 
					
						
						|  | AutoProcessor, | 
					
						
						|  | AutoTokenizer, | 
					
						
						|  | HfArgumentParser, | 
					
						
						|  | Trainer, | 
					
						
						|  | TrainingArguments, | 
					
						
						|  | Wav2Vec2Processor, | 
					
						
						|  | set_seed, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.trainer_utils import get_last_checkpoint, is_main_process | 
					
						
						|  | from transformers.utils import check_min_version | 
					
						
						|  | from transformers.utils.versions import require_version | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_min_version("4.16.0.dev0") | 
					
						
						|  |  | 
					
						
						|  | require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def list_field(default=None, metadata=None): | 
					
						
						|  | return field(default_factory=lambda: default, metadata=metadata) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class ModelArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_name_or_path: str = field( | 
					
						
						|  | metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | 
					
						
						|  | ) | 
					
						
						|  | tokenizer_name_or_path: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"}, | 
					
						
						|  | ) | 
					
						
						|  | cache_dir: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | 
					
						
						|  | ) | 
					
						
						|  | freeze_feature_encoder: bool = field( | 
					
						
						|  | default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} | 
					
						
						|  | ) | 
					
						
						|  | attention_dropout: float = field( | 
					
						
						|  | default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."} | 
					
						
						|  | ) | 
					
						
						|  | activation_dropout: float = field( | 
					
						
						|  | default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} | 
					
						
						|  | ) | 
					
						
						|  | feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."}) | 
					
						
						|  | hidden_dropout: float = field( | 
					
						
						|  | default=0.0, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | final_dropout: float = field( | 
					
						
						|  | default=0.0, | 
					
						
						|  | metadata={"help": "The dropout probability for the final projection layer."}, | 
					
						
						|  | ) | 
					
						
						|  | mask_time_prob: float = field( | 
					
						
						|  | default=0.05, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector" | 
					
						
						|  | "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" | 
					
						
						|  | "vectors will be masked along the time axis." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | mask_time_length: int = field( | 
					
						
						|  | default=10, | 
					
						
						|  | metadata={"help": "Length of vector span to mask along the time axis."}, | 
					
						
						|  | ) | 
					
						
						|  | mask_feature_prob: float = field( | 
					
						
						|  | default=0.0, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector" | 
					
						
						|  | "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | mask_feature_length: int = field( | 
					
						
						|  | default=10, | 
					
						
						|  | metadata={"help": "Length of vector span to mask along the feature axis."}, | 
					
						
						|  | ) | 
					
						
						|  | layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."}) | 
					
						
						|  | ctc_loss_reduction: Optional[str] = field( | 
					
						
						|  | default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."} | 
					
						
						|  | ) | 
					
						
						|  | ctc_zero_infinity: Optional[bool] = field( | 
					
						
						|  | default=False, metadata={"help": "If True, will try yo aboud the CTC loss goinf to infinity."} | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DataTrainingArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to what data we are going to input our model for training and eval. | 
					
						
						|  |  | 
					
						
						|  | Using `HfArgumentParser` we can turn this class | 
					
						
						|  | into argparse arguments to be able to specify them on | 
					
						
						|  | the command line. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | dataset_name: str = field( | 
					
						
						|  | metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | 
					
						
						|  | ) | 
					
						
						|  | dataset_config_name: str = field( | 
					
						
						|  | default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | 
					
						
						|  | ) | 
					
						
						|  | train_split_name: str = field( | 
					
						
						|  | default="train+validation", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | eval_split_name: str = field( | 
					
						
						|  | default="test", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | audio_column_name: str = field( | 
					
						
						|  | default="audio", | 
					
						
						|  | metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, | 
					
						
						|  | ) | 
					
						
						|  | text_column_name: str = field( | 
					
						
						|  | default="text", | 
					
						
						|  | metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, | 
					
						
						|  | ) | 
					
						
						|  | overwrite_cache: bool = field( | 
					
						
						|  | default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | 
					
						
						|  | ) | 
					
						
						|  | preprocessing_num_workers: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "The number of processes to use for the preprocessing."}, | 
					
						
						|  | ) | 
					
						
						|  | max_train_samples: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "For debugging purposes or quicker training, truncate the number of training examples to this " | 
					
						
						|  | "value if set." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | max_eval_samples: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "For debugging purposes or quicker training, truncate the number of validation examples to this " | 
					
						
						|  | "value if set." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | chars_to_ignore: Optional[List[str]] = list_field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "A list of characters to remove from the transcripts."}, | 
					
						
						|  | ) | 
					
						
						|  | eval_metrics: List[str] = list_field( | 
					
						
						|  | default=["wer"], | 
					
						
						|  | metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"}, | 
					
						
						|  | ) | 
					
						
						|  | max_duration_in_seconds: float = field( | 
					
						
						|  | default=20.0, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`" | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | min_duration_in_seconds: float = field( | 
					
						
						|  | default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} | 
					
						
						|  | ) | 
					
						
						|  | preprocessing_only: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "Whether to only do data preprocessing and skip training. " | 
					
						
						|  | "This is especially useful when data preprocessing errors out in distributed training due to timeout. " | 
					
						
						|  | "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` " | 
					
						
						|  | "so that the cached datasets can consequently be loaded in distributed training" | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | use_auth_token: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "If :obj:`True`, will use the token generated when running" | 
					
						
						|  | ":obj:`transformers-cli login` as HTTP bearer authorization for remote files." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | unk_token: str = field( | 
					
						
						|  | default="[UNK]", | 
					
						
						|  | metadata={"help": "The unk token for the tokenizer"}, | 
					
						
						|  | ) | 
					
						
						|  | pad_token: str = field( | 
					
						
						|  | default="[PAD]", | 
					
						
						|  | metadata={"help": "The padding token for the tokenizer"}, | 
					
						
						|  | ) | 
					
						
						|  | word_delimiter_token: str = field( | 
					
						
						|  | default="|", | 
					
						
						|  | metadata={"help": "The word delimiter token for the tokenizer"}, | 
					
						
						|  | ) | 
					
						
						|  | phoneme_language: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The target language that should be used be" | 
					
						
						|  | " passed to the tokenizer for tokenization. Note that" | 
					
						
						|  | " this is only relevant if the model classifies the" | 
					
						
						|  | " input audio to a sequence of phoneme sequences." | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DataCollatorCTCWithPadding: | 
					
						
						|  | """ | 
					
						
						|  | Data collator that will dynamically pad the inputs received. | 
					
						
						|  | Args: | 
					
						
						|  | processor (:class:`~transformers.AutoProcessor`) | 
					
						
						|  | The processor used for proccessing the data. | 
					
						
						|  | padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | 
					
						
						|  | Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | 
					
						
						|  | among: | 
					
						
						|  | * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | 
					
						
						|  | sequence if provided). | 
					
						
						|  | * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | 
					
						
						|  | maximum acceptable input length for the model if that argument is not provided. | 
					
						
						|  | * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | 
					
						
						|  | different lengths). | 
					
						
						|  | max_length (:obj:`int`, `optional`): | 
					
						
						|  | Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). | 
					
						
						|  | max_length_labels (:obj:`int`, `optional`): | 
					
						
						|  | Maximum length of the ``labels`` returned list and optionally padding length (see above). | 
					
						
						|  | pad_to_multiple_of (:obj:`int`, `optional`): | 
					
						
						|  | If set will pad the sequence to a multiple of the provided value. | 
					
						
						|  | This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | 
					
						
						|  | 7.5 (Volta). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | processor: AutoProcessor | 
					
						
						|  | padding: Union[bool, str] = "longest" | 
					
						
						|  | pad_to_multiple_of: Optional[int] = None | 
					
						
						|  | pad_to_multiple_of_labels: Optional[int] = None | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_features = [{"input_values": feature["input_values"]} for feature in features] | 
					
						
						|  | label_features = [{"input_ids": feature["labels"]} for feature in features] | 
					
						
						|  |  | 
					
						
						|  | batch = self.processor.pad( | 
					
						
						|  | input_features, | 
					
						
						|  | padding=self.padding, | 
					
						
						|  | pad_to_multiple_of=self.pad_to_multiple_of, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with self.processor.as_target_processor(): | 
					
						
						|  | labels_batch = self.processor.pad( | 
					
						
						|  | label_features, | 
					
						
						|  | padding=self.padding, | 
					
						
						|  | pad_to_multiple_of=self.pad_to_multiple_of_labels, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) | 
					
						
						|  |  | 
					
						
						|  | batch["labels"] = labels | 
					
						
						|  |  | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def create_vocabulary_from_data( | 
					
						
						|  | datasets: DatasetDict, | 
					
						
						|  | word_delimiter_token: Optional[str] = None, | 
					
						
						|  | unk_token: Optional[str] = None, | 
					
						
						|  | pad_token: Optional[str] = None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | def extract_all_chars(batch): | 
					
						
						|  | all_text = " ".join(batch["target_text"]) | 
					
						
						|  | vocab = list(set(all_text)) | 
					
						
						|  | return {"vocab": [vocab], "all_text": [all_text]} | 
					
						
						|  |  | 
					
						
						|  | vocabs = datasets.map( | 
					
						
						|  | extract_all_chars, | 
					
						
						|  | batched=True, | 
					
						
						|  | batch_size=-1, | 
					
						
						|  | keep_in_memory=True, | 
					
						
						|  | remove_columns=datasets["train"].column_names, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | vocab_set = functools.reduce( | 
					
						
						|  | lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if word_delimiter_token is not None: | 
					
						
						|  | vocab_dict[word_delimiter_token] = vocab_dict[" "] | 
					
						
						|  | del vocab_dict[" "] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if unk_token is not None: | 
					
						
						|  | vocab_dict[unk_token] = len(vocab_dict) | 
					
						
						|  |  | 
					
						
						|  | if pad_token is not None: | 
					
						
						|  | vocab_dict[pad_token] = len(vocab_dict) | 
					
						
						|  |  | 
					
						
						|  | return vocab_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | 
					
						
						|  | if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | 
					
						
						|  | else: | 
					
						
						|  | model_args, data_args, training_args = parser.parse_args_into_dataclasses() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | last_checkpoint = None | 
					
						
						|  | if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | 
					
						
						|  | last_checkpoint = get_last_checkpoint(training_args.output_dir) | 
					
						
						|  | if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Output directory ({training_args.output_dir}) already exists and is not empty. " | 
					
						
						|  | "Use --overwrite_output_dir to overcome." | 
					
						
						|  | ) | 
					
						
						|  | elif last_checkpoint is not None: | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | 
					
						
						|  | "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig( | 
					
						
						|  | format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | 
					
						
						|  | datefmt="%m/%d/%Y %H:%M:%S", | 
					
						
						|  | handlers=[logging.StreamHandler(sys.stdout)], | 
					
						
						|  | ) | 
					
						
						|  | logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | 
					
						
						|  | f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if is_main_process(training_args.local_rank): | 
					
						
						|  | transformers.utils.logging.set_verbosity_info() | 
					
						
						|  | logger.info("Training/evaluation parameters %s", training_args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | set_seed(training_args.seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import re | 
					
						
						|  | def filter_numeric(entry): | 
					
						
						|  | return  ( | 
					
						
						|  | "0" not in entry["text"] | 
					
						
						|  | and "1" not in entry["text"] | 
					
						
						|  | and "2" not in entry["text"] | 
					
						
						|  | and "3" not in entry["text"] | 
					
						
						|  | and "4" not in entry["text"] | 
					
						
						|  | and "5" not in entry["text"] | 
					
						
						|  | and "6" not in entry["text"] | 
					
						
						|  | and "7" not in entry["text"] | 
					
						
						|  | and "8" not in entry["text"] | 
					
						
						|  | and "9" not in entry["text"] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def filter_tooshort(entry): | 
					
						
						|  |  | 
					
						
						|  | return (len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3) | 
					
						
						|  |  | 
					
						
						|  | def map_dataset(entry): | 
					
						
						|  | batch = {"text": entry["text"].lower()} | 
					
						
						|  | batch["text"] = re.sub('[áàâ]', 'a', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('[ä]', 'æ', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('[éèëê]', 'e', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('[íìïî]', 'i', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('[óòöô]', 'o', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('[ö]', 'ø', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('[ç]', 'c', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('[úùüû]', 'u', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('\s', ' ', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('<ee>', 'eee', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('<qq>', 'qqq', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('<mm>', 'mmm', batch["text"]) | 
					
						
						|  | batch["text"] = re.sub('<inaudible>', 'xxx', batch["text"]) | 
					
						
						|  |  | 
					
						
						|  | if "<" in batch["text"]: | 
					
						
						|  | raise ValueError(batch["text"]) | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | raw_datasets = DatasetDict() | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  | raw_datasets["train"] = load_dataset( | 
					
						
						|  | data_args.dataset_name, | 
					
						
						|  | data_args.dataset_config_name, | 
					
						
						|  | split=data_args.train_split_name, | 
					
						
						|  | use_auth_token=data_args.use_auth_token, | 
					
						
						|  | ).shuffle() | 
					
						
						|  | raw_datasets["train"] = raw_datasets["train"].filter(filter_numeric).filter(filter_tooshort) | 
					
						
						|  | raw_datasets["train"] = raw_datasets["train"].map(map_dataset) | 
					
						
						|  |  | 
					
						
						|  | if data_args.audio_column_name not in raw_datasets["train"].column_names: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " | 
					
						
						|  | "Make sure to set `--audio_column_name` to the correct audio column - one of " | 
					
						
						|  | f"{', '.join(raw_datasets['train'].column_names)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if data_args.text_column_name not in raw_datasets["train"].column_names: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " | 
					
						
						|  | "Make sure to set `--text_column_name` to the correct text column - one of " | 
					
						
						|  | f"{', '.join(raw_datasets['train'].column_names)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if data_args.max_train_samples is not None: | 
					
						
						|  | raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_eval: | 
					
						
						|  | raw_datasets["eval"] = load_dataset( | 
					
						
						|  | data_args.dataset_name, | 
					
						
						|  | data_args.dataset_config_name, | 
					
						
						|  | split=data_args.eval_split_name, | 
					
						
						|  | use_auth_token=data_args.use_auth_token, | 
					
						
						|  | ).shuffle() | 
					
						
						|  | raw_datasets["eval"] = raw_datasets["eval"].filter(filter_numeric).filter(filter_tooshort) | 
					
						
						|  | raw_datasets["eval"] = raw_datasets["eval"].map(map_dataset) | 
					
						
						|  |  | 
					
						
						|  | if data_args.max_eval_samples is not None: | 
					
						
						|  | raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]' | 
					
						
						|  |  | 
					
						
						|  | text_column_name = data_args.text_column_name | 
					
						
						|  |  | 
					
						
						|  | def remove_special_characters(batch): | 
					
						
						|  | if chars_to_ignore_regex is not None: | 
					
						
						|  | batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " " | 
					
						
						|  | else: | 
					
						
						|  | batch["target_text"] = batch[text_column_name].lower() + " " | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | with training_args.main_process_first(desc="dataset map special characters removal"): | 
					
						
						|  | raw_datasets = raw_datasets.map( | 
					
						
						|  | remove_special_characters, | 
					
						
						|  | remove_columns=[text_column_name], | 
					
						
						|  | desc="remove special characters from datasets", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | word_delimiter_token = data_args.word_delimiter_token | 
					
						
						|  | unk_token = data_args.unk_token | 
					
						
						|  | pad_token = data_args.pad_token | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = AutoConfig.from_pretrained( | 
					
						
						|  | model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizer_name_or_path = model_args.tokenizer_name_or_path | 
					
						
						|  | tokenizer_kwargs = {} | 
					
						
						|  | if tokenizer_name_or_path is None: | 
					
						
						|  |  | 
					
						
						|  | tokenizer_name_or_path = training_args.output_dir | 
					
						
						|  |  | 
					
						
						|  | vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json") | 
					
						
						|  |  | 
					
						
						|  | with training_args.main_process_first(): | 
					
						
						|  | if training_args.overwrite_output_dir and os.path.isfile(vocab_file): | 
					
						
						|  | os.remove(vocab_file) | 
					
						
						|  |  | 
					
						
						|  | with training_args.main_process_first(desc="dataset map vocabulary creation"): | 
					
						
						|  | if not os.path.isfile(vocab_file): | 
					
						
						|  | os.makedirs(tokenizer_name_or_path, exist_ok=True) | 
					
						
						|  | vocab_dict = create_vocabulary_from_data( | 
					
						
						|  | raw_datasets, | 
					
						
						|  | word_delimiter_token=word_delimiter_token, | 
					
						
						|  | unk_token=unk_token, | 
					
						
						|  | pad_token=pad_token, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with open(vocab_file, "w") as file: | 
					
						
						|  | json.dump(vocab_dict, file) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizer_kwargs = { | 
					
						
						|  | "config": config if config.tokenizer_class is not None else None, | 
					
						
						|  | "tokenizer_type": config.model_type if config.tokenizer_class is None else None, | 
					
						
						|  | "unk_token": unk_token, | 
					
						
						|  | "pad_token": pad_token, | 
					
						
						|  | "word_delimiter_token": word_delimiter_token, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained( | 
					
						
						|  | tokenizer_name_or_path, | 
					
						
						|  | use_auth_token=data_args.use_auth_token, | 
					
						
						|  | **tokenizer_kwargs, | 
					
						
						|  | ) | 
					
						
						|  | feature_extractor = AutoFeatureExtractor.from_pretrained( | 
					
						
						|  | model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config.update( | 
					
						
						|  | { | 
					
						
						|  | "feat_proj_dropout": model_args.feat_proj_dropout, | 
					
						
						|  | "attention_dropout": model_args.attention_dropout, | 
					
						
						|  | "hidden_dropout": model_args.hidden_dropout, | 
					
						
						|  | "final_dropout": model_args.final_dropout, | 
					
						
						|  | "mask_time_prob": model_args.mask_time_prob, | 
					
						
						|  | "mask_time_length": model_args.mask_time_length, | 
					
						
						|  | "mask_feature_prob": model_args.mask_feature_prob, | 
					
						
						|  | "mask_feature_length": model_args.mask_feature_length, | 
					
						
						|  | "gradient_checkpointing": training_args.gradient_checkpointing, | 
					
						
						|  | "layerdrop": model_args.layerdrop, | 
					
						
						|  | "ctc_loss_reduction": model_args.ctc_loss_reduction, | 
					
						
						|  | "ctc_zero_infinity": model_args.ctc_zero_infinity, | 
					
						
						|  | "pad_token_id": tokenizer.pad_token_id, | 
					
						
						|  | "vocab_size": len(tokenizer), | 
					
						
						|  | "activation_dropout": model_args.activation_dropout, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model = AutoModelForCTC.from_pretrained( | 
					
						
						|  | model_args.model_name_or_path, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | config=config, | 
					
						
						|  | use_auth_token=data_args.use_auth_token, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if model_args.freeze_feature_encoder: | 
					
						
						|  | model.freeze_feature_encoder() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate | 
					
						
						|  | if dataset_sampling_rate != feature_extractor.sampling_rate: | 
					
						
						|  | raw_datasets = raw_datasets.cast_column( | 
					
						
						|  | data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate | 
					
						
						|  | min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate | 
					
						
						|  | audio_column_name = data_args.audio_column_name | 
					
						
						|  | num_workers = data_args.preprocessing_num_workers | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | phoneme_language = data_args.phoneme_language | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_dataset(batch): | 
					
						
						|  |  | 
					
						
						|  | sample = batch[audio_column_name] | 
					
						
						|  |  | 
					
						
						|  | inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) | 
					
						
						|  | batch["input_values"] = inputs.input_values[0] | 
					
						
						|  | batch["input_length"] = len(batch["input_values"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | additional_kwargs = {} | 
					
						
						|  | if phoneme_language is not None: | 
					
						
						|  | additional_kwargs["phonemizer_lang"] = phoneme_language | 
					
						
						|  |  | 
					
						
						|  | batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | with training_args.main_process_first(desc="dataset map preprocessing"): | 
					
						
						|  | vectorized_datasets = raw_datasets.map( | 
					
						
						|  | prepare_dataset, | 
					
						
						|  | remove_columns=next(iter(raw_datasets.values())).column_names, | 
					
						
						|  | num_proc=num_workers, | 
					
						
						|  | desc="preprocess datasets", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def is_audio_in_length_range(length): | 
					
						
						|  | return length > min_input_length and length < max_input_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | vectorized_datasets = vectorized_datasets.filter( | 
					
						
						|  | is_audio_in_length_range, | 
					
						
						|  | num_proc=num_workers, | 
					
						
						|  | input_columns=["input_length"], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if data_args.preprocessing_only: | 
					
						
						|  | logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | def compute_metrics(pred): | 
					
						
						|  | pred_logits = pred.predictions | 
					
						
						|  | pred_ids = np.argmax(pred_logits, axis=-1) | 
					
						
						|  |  | 
					
						
						|  | pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id | 
					
						
						|  |  | 
					
						
						|  | pred_str = tokenizer.batch_decode(pred_ids) | 
					
						
						|  |  | 
					
						
						|  | label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False) | 
					
						
						|  |  | 
					
						
						|  | metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()} | 
					
						
						|  |  | 
					
						
						|  | return metrics | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_main_process(training_args.local_rank): | 
					
						
						|  |  | 
					
						
						|  | feature_extractor.save_pretrained(training_args.output_dir) | 
					
						
						|  | tokenizer.save_pretrained(training_args.output_dir) | 
					
						
						|  | config.save_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | processor = AutoProcessor.from_pretrained(training_args.output_dir) | 
					
						
						|  | except (OSError, KeyError): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Loading a processor from a feature extractor config that does not" | 
					
						
						|  | " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following " | 
					
						
						|  | " attribute to your `preprocessor_config.json` file to suppress this warning: " | 
					
						
						|  | " `'processor_class': 'Wav2Vec2Processor'`", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | data_collator = DataCollatorCTCWithPadding(processor=processor) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | trainer = Trainer( | 
					
						
						|  | model=model, | 
					
						
						|  | data_collator=data_collator, | 
					
						
						|  | args=training_args, | 
					
						
						|  | compute_metrics=compute_metrics, | 
					
						
						|  | train_dataset=vectorized_datasets["train"] if training_args.do_train else None, | 
					
						
						|  | eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, | 
					
						
						|  | tokenizer=feature_extractor, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if last_checkpoint is not None: | 
					
						
						|  | checkpoint = last_checkpoint | 
					
						
						|  | elif os.path.isdir(model_args.model_name_or_path): | 
					
						
						|  | checkpoint = model_args.model_name_or_path | 
					
						
						|  | else: | 
					
						
						|  | checkpoint = None | 
					
						
						|  |  | 
					
						
						|  | train_result = trainer.train(resume_from_checkpoint=checkpoint) | 
					
						
						|  | trainer.save_model() | 
					
						
						|  |  | 
					
						
						|  | metrics = train_result.metrics | 
					
						
						|  | max_train_samples = ( | 
					
						
						|  | data_args.max_train_samples | 
					
						
						|  | if data_args.max_train_samples is not None | 
					
						
						|  | else len(vectorized_datasets["train"]) | 
					
						
						|  | ) | 
					
						
						|  | metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) | 
					
						
						|  |  | 
					
						
						|  | trainer.log_metrics("train", metrics) | 
					
						
						|  | trainer.save_metrics("train", metrics) | 
					
						
						|  | trainer.save_state() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | results = {} | 
					
						
						|  | if training_args.do_eval: | 
					
						
						|  | logger.info("*** Evaluate ***") | 
					
						
						|  | metrics = trainer.evaluate() | 
					
						
						|  | max_eval_samples = ( | 
					
						
						|  | data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"]) | 
					
						
						|  | ) | 
					
						
						|  | metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"])) | 
					
						
						|  |  | 
					
						
						|  | trainer.log_metrics("eval", metrics) | 
					
						
						|  | trainer.save_metrics("eval", metrics) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na" | 
					
						
						|  | kwargs = { | 
					
						
						|  | "finetuned_from": model_args.model_name_or_path, | 
					
						
						|  | "tasks": "speech-recognition", | 
					
						
						|  | "tags": ["automatic-speech-recognition", data_args.dataset_name], | 
					
						
						|  | "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}", | 
					
						
						|  | "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}", | 
					
						
						|  | } | 
					
						
						|  | if "common_voice" in data_args.dataset_name: | 
					
						
						|  | kwargs["language"] = config_name | 
					
						
						|  |  | 
					
						
						|  | if training_args.push_to_hub: | 
					
						
						|  | trainer.push_to_hub(**kwargs) | 
					
						
						|  | else: | 
					
						
						|  | trainer.create_model_card(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | return results | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |