--- tags: - ColBERT - PyLate - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:640000 - loss:Distillation base_model: bclavie/mini-base datasets: - lightonai/ms-marco-en-bge-gemma-unnormalized pipeline_tag: sentence-similarity library_name: PyLate license: apache-2.0 metrics: - MaxSim_accuracy@1 - MaxSim_accuracy@3 - MaxSim_accuracy@5 - MaxSim_accuracy@10 - MaxSim_precision@1 - MaxSim_precision@3 - MaxSim_precision@5 - MaxSim_precision@10 - MaxSim_recall@1 - MaxSim_recall@3 - MaxSim_recall@5 - MaxSim_recall@10 - MaxSim_ndcg@10 - MaxSim_mrr@10 - MaxSim_map@100 model-index: - name: ColBERT MUVERA Small results: - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: MaxSim_accuracy@1 value: 0.28 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.38 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.52 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.64 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.28 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.14666666666666667 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.12 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.08 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.13166666666666665 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.21 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.265 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.335 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.27666051264859415 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.3671349206349206 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.22158617300046946 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: MaxSim_accuracy@1 value: 0.8 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.88 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.92 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.96 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.8 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.6333333333333332 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.556 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.48399999999999993 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.10583280294731091 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.1747980000610803 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.2211728749541224 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.3392671917074792 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.6189072509940752 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.8510238095238097 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.47586135688175013 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: MaxSim_accuracy@1 value: 0.88 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.96 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 1.0 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 1.0 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.88 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.33333333333333326 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.21199999999999997 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.10799999999999997 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.8166666666666668 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.9133333333333333 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.9633333333333333 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.9733333333333333 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.9208334669406996 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.929 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.8912380952380953 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: MaxSim_accuracy@1 value: 0.44 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.56 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.68 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.76 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.44 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.26666666666666666 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.22 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.13599999999999998 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.22257936507936507 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.36418253968253966 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.5042063492063492 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.5963968253968254 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.4781894440800092 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.5321666666666666 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.39543817074336585 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: MaxSim_accuracy@1 value: 0.84 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.96 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.98 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.98 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.84 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.5066666666666666 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.324 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.17399999999999996 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.42 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.76 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.81 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.87 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.813477163259318 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.8973333333333333 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.7469519155158202 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: MaxSim_accuracy@1 value: 0.48 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.64 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.68 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.8 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.48 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.21333333333333332 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.136 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.08 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.48 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.64 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.68 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.8 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.6277729303272284 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.574547619047619 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.585980942367483 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: MaxSim_accuracy@1 value: 0.5 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.62 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.64 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.74 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.5 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.4 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.3440000000000001 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.292 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.06602691624937523 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.09818050757008642 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.11806464030634821 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.15514192209178235 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.37561452677051027 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.5691666666666667 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.18300178358234423 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: MaxSim_accuracy@1 value: 0.56 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.76 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.78 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.82 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.56 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.2533333333333333 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.16399999999999998 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.088 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.54 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.71 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.75 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.79 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.6818400710905007 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.6597222222222223 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.6459882013890279 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: MaxSim_accuracy@1 value: 0.86 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.98 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.98 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 1.0 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.86 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.40666666666666657 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.264 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.13799999999999998 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.764 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.9453333333333334 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.97 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.9966666666666666 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.9414269581610836 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.9228571428571428 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.9205543345543344 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: MaxSim_accuracy@1 value: 0.5 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.74 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.76 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.82 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.5 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.3933333333333333 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.292 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.18599999999999997 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.10466666666666667 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.24366666666666664 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.29966666666666664 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.3826666666666666 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.39084995006976664 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.6197222222222222 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.3153590016638529 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: MaxSim_accuracy@1 value: 0.28 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.56 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.64 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.84 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.28 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.18666666666666668 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.12800000000000003 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.08399999999999999 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.28 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.56 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.64 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.84 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.5432952971404568 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.450484126984127 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.4551681906230779 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: MaxSim_accuracy@1 value: 0.7 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.82 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.84 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.88 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.7 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.29333333333333333 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.18799999999999997 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.09799999999999998 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.665 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.81 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.84 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.87 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.7883940477308562 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.7645238095238096 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.7622104923007755 name: Maxsim Map@100 - task: type: py-late-information-retrieval name: Py Late Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: MaxSim_accuracy@1 value: 0.673469387755102 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.9183673469387755 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.9591836734693877 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 1.0 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.673469387755102 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.6326530612244898 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.6040816326530614 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.5020408163265305 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.04919462393895531 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.13143050077268048 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.20505385244507174 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.3259510245836729 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.5631037374817277 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.7906462585034014 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.41297955687388305 name: Maxsim Map@100 - task: type: nano-beir name: Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: MaxSim_accuracy@1 value: 0.5994976452119309 name: Maxsim Accuracy@1 - type: MaxSim_accuracy@3 value: 0.7521821036106752 name: Maxsim Accuracy@3 - type: MaxSim_accuracy@5 value: 0.7983987441130298 name: Maxsim Accuracy@5 - type: MaxSim_accuracy@10 value: 0.8646153846153847 name: Maxsim Accuracy@10 - type: MaxSim_precision@1 value: 0.5994976452119309 name: Maxsim Precision@1 - type: MaxSim_precision@3 value: 0.3589220303506017 name: Maxsim Precision@3 - type: MaxSim_precision@5 value: 0.2732370486656201 name: Maxsim Precision@5 - type: MaxSim_precision@10 value: 0.18846467817896384 name: Maxsim Precision@10 - type: MaxSim_recall@1 value: 0.35735643909346215 name: Maxsim Recall@1 - type: MaxSim_recall@3 value: 0.5046865293399786 name: Maxsim Recall@3 - type: MaxSim_recall@5 value: 0.5589613628393763 name: Maxsim Recall@5 - type: MaxSim_recall@10 value: 0.6364941254189559 name: Maxsim Recall@10 - type: MaxSim_ndcg@10 value: 0.6169511812842173 name: Maxsim Ndcg@10 - type: MaxSim_mrr@10 value: 0.6867945229373801 name: Maxsim Mrr@10 - type: MaxSim_map@100 value: 0.5394090934410984 name: Maxsim Map@100 --- # ColBERT MUVERA Small This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [bclavie/mini-base](https://huggingface.co/bclavie/mini-base) on the [msmarco-en-bge-gemma-unnormalized](https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma-unnormalized) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. This model is trained with un-normalized scores, making it compatible with [MUVERA fixed-dimensional encoding](https://arxiv.org/abs/2405.19504). ## Usage (txtai) This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG). _Note: txtai 9.0+ is required for late interaction model support_ ```python import txtai embeddings = txtai.Embeddings( sparse="neuml/colbert-muvera-small", content=True ) embeddings.index(documents()) # Run a query embeddings.search("query to run") ``` Late interaction models excel as reranker pipelines. ```python from txtai.pipeline import Reranker, Similarity similarity = Similarity(path="neuml/colbert-muvera-small", lateencode=True) ranker = Reranker(embeddings, similarity) ranker("query to run") ``` ## Usage (PyLate) Alternatively, the model can be loaded with [PyLate](https://github.com/lightonai/pylate). ```python from pylate import rank, models queries = [ "query A", "query B", ] documents = [ ["document A", "document B"], ["document 1", "document C", "document B"], ] documents_ids = [ [1, 2], [1, 3, 2], ] model = models.ColBERT( model_name_or_path="neuml/colbert-muvera-small", ) queries_embeddings = model.encode( queries, is_query=True, ) documents_embeddings = model.encode( documents, is_query=False, ) reranked_documents = rank.rerank( documents_ids=documents_ids, queries_embeddings=queries_embeddings, documents_embeddings=documents_embeddings, ) ``` ## Full Model Architecture ``` ColBERT( (0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertModel (1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Evaluation ### BEIR Subset The following table shows a subset of BEIR scored with the [txtai benchmarks script](https://github.com/neuml/txtai/blob/master/examples/benchmarks.py). Scores reported are `ndcg@10` and grouped into the following three categories. #### FULL multi-vector maxsim | Model | Parameters | ArguAna | NFCorpus | SciFact | Average | |:------------------|:-----------|:---------|:---------|:--------|:--------| | [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.4440 | 0.3649 | 0.7423 | 0.5171 | | [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.4595 | 0.3165 | 0.6456 | 0.4739 | | [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M | 0.3947 | 0.3235 | 0.6676 | 0.4619 | | [**ColBERT MUVERA Small**](https://huggingface.co/neuml/colbert-muvera-small) | **33M** | **0.4455** | **0.3502** | **0.7145** | **0.5034** | | [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.4946 | 0.3717 | 0.7529 | 0.5397 | #### MUVERA encoding + maxsim re-ranking of the top 100 results per MUVERA paper | Model | Parameters | ArguAna | NFCorpus | SciFact | Average | |:------------------|:-----------|:---------|:---------|:--------|:--------| | [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.0317 | 0.1135 | 0.0836 | 0.0763 | | [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.4562 | 0.3025 | 0.6278 | 0.4622 | | [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M| 0.3849 | 0.3095 | 0.6464 | 0.4469 | | [**ColBERT MUVERA Small**](https://huggingface.co/neuml/colbert-muvera-small) | **33M** | **0.4451** | **0.3537** | **0.7148** | **0.5045** | | [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.0265 | 0.1052 | 0.0556 | 0.0624 | #### MUVERA encoding only | Model | Parameters | ArguAna | NFCorpus | SciFact | Average | |:------------------|:-----------|:---------|:---------|:--------|:--------| | [AnswerAI ColBERT Small v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) | 33M | 0.0024 | 0.0201 | 0.0047 | 0.0091 | | [ColBERT v2](https://huggingface.co/colbert-ir/colbertv2.0) | 110M | 0.3463 | 0.2356 | 0.5002 | 0.3607 | | [ColBERT MUVERA Micro](https://huggingface.co/neuml/colbert-muvera-micro) | 4M | 0.2795 | 0.2348 | 0.4875 | 0.3339 | | [**ColBERT MUVERA Small**](https://huggingface.co/neuml/colbert-muvera-small) | **33M** | **0.3850** | **0.2928** | **0.6357** | **0.4378** | | [GTE ModernColBERT v1](https://huggingface.co/lightonai/GTE-ModernColBERT-v1) | 149M | 0.0003 | 0.0203 |0.0013 | 0.0073 | _Note: The scores reported don't match scores reported in the respective papers due to different default settings in the txtai benchmark scripts._ As noted earlier, models trained with min-max score normalization don't perform well with MUVERA encoding. See this [GitHub Issue](https://github.com/lightonai/pylate/issues/142) for more. **In reviewing the scores, this model is surprisingly and unreasonably competitive with the original ColBERT v2 model at only 3% of the size!** ### Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator | Metric | Value | |:--------------------|:----------| | MaxSim_accuracy@1 | 0.5995 | | MaxSim_accuracy@3 | 0.7522 | | MaxSim_accuracy@5 | 0.7984 | | MaxSim_accuracy@10 | 0.8646 | | MaxSim_precision@1 | 0.5995 | | MaxSim_precision@3 | 0.3589 | | MaxSim_precision@5 | 0.2732 | | MaxSim_precision@10 | 0.1885 | | MaxSim_recall@1 | 0.3574 | | MaxSim_recall@3 | 0.5047 | | MaxSim_recall@5 | 0.559 | | MaxSim_recall@10 | 0.6365 | | **MaxSim_ndcg@10** | **0.617** | | MaxSim_mrr@10 | 0.6868 | | MaxSim_map@100 | 0.5394 | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `gradient_accumulation_steps`: 4 - `learning_rate`: 3e-06 - `num_train_epochs`: 1 - `warmup_ratio`: 0.05 - `bf16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-06 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Framework Versions - Python: 3.10.18 - Sentence Transformers: 4.0.2 - PyLate: 1.3.0 - Transformers: 4.52.3 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084" } ``` #### PyLate ```bibtex @misc{PyLate, title={PyLate: Flexible Training and Retrieval for Late Interaction Models}, author={Chaffin, Antoine and Sourty, Raphaƫl}, url={https://github.com/lightonai/pylate}, year={2024} } ```