Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
library_name: pytorch
|
| 5 |
+
tags:
|
| 6 |
+
- deep-reinforcement-learning
|
| 7 |
+
- reinforcement-learning
|
| 8 |
+
- DI-engine
|
| 9 |
+
- CartPole-v0
|
| 10 |
+
benchmark_name: OpenAI/Gym/Box2d
|
| 11 |
+
task_name: CartPole-v0
|
| 12 |
+
pipeline_tag: reinforcement-learning
|
| 13 |
+
model-index:
|
| 14 |
+
- name: SampledEfficientZero
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: reinforcement-learning
|
| 18 |
+
name: reinforcement-learning
|
| 19 |
+
dataset:
|
| 20 |
+
name: CartPole-v0
|
| 21 |
+
type: CartPole-v0
|
| 22 |
+
metrics:
|
| 23 |
+
- type: mean_reward
|
| 24 |
+
value: 162.4 +/- 23.27
|
| 25 |
+
name: mean_reward
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
# Play **CartPole-v0** with **SampledEfficientZero** Policy
|
| 29 |
+
|
| 30 |
+
## Model Description
|
| 31 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 32 |
+
|
| 33 |
+
This implementation applies **SampledEfficientZero** to the OpenAI/Gym/Box2d **CartPole-v0** environment using [LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine).
|
| 34 |
+
|
| 35 |
+
**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).
|
| 36 |
+
|
| 37 |
+
## Model Usage
|
| 38 |
+
### Install the Dependencies
|
| 39 |
+
<details close>
|
| 40 |
+
<summary>(Click for Details)</summary>
|
| 41 |
+
|
| 42 |
+
```shell
|
| 43 |
+
# install huggingface_ding
|
| 44 |
+
git clone https://github.com/opendilab/huggingface_ding.git
|
| 45 |
+
pip3 install -e ./huggingface_ding/
|
| 46 |
+
# install environment dependencies if needed
|
| 47 |
+
|
| 48 |
+
pip3 install DI-engine[common_env,video]
|
| 49 |
+
pip3 install LightZero
|
| 50 |
+
|
| 51 |
+
```
|
| 52 |
+
</details>
|
| 53 |
+
|
| 54 |
+
### Git Clone from Huggingface and Run the Model
|
| 55 |
+
|
| 56 |
+
<details close>
|
| 57 |
+
<summary>(Click for Details)</summary>
|
| 58 |
+
|
| 59 |
+
```shell
|
| 60 |
+
# running with trained model
|
| 61 |
+
python3 -u run.py
|
| 62 |
+
```
|
| 63 |
+
**run.py**
|
| 64 |
+
```python
|
| 65 |
+
from lzero.agent import SampledEfficientZeroAgent
|
| 66 |
+
from ding.config import Config
|
| 67 |
+
from easydict import EasyDict
|
| 68 |
+
import torch
|
| 69 |
+
|
| 70 |
+
# Pull model from files which are git cloned from huggingface
|
| 71 |
+
policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
|
| 72 |
+
cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict)
|
| 73 |
+
# Instantiate the agent
|
| 74 |
+
agent = SampledEfficientZeroAgent(
|
| 75 |
+
env_id="CartPole-v0", exp_name="CartPole-v0-SampledEfficientZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
|
| 76 |
+
)
|
| 77 |
+
# Continue training
|
| 78 |
+
agent.train(step=5000)
|
| 79 |
+
# Render the new agent performance
|
| 80 |
+
agent.deploy(enable_save_replay=True)
|
| 81 |
+
|
| 82 |
+
```
|
| 83 |
+
</details>
|
| 84 |
+
|
| 85 |
+
### Run Model by Using Huggingface_ding
|
| 86 |
+
|
| 87 |
+
<details close>
|
| 88 |
+
<summary>(Click for Details)</summary>
|
| 89 |
+
|
| 90 |
+
```shell
|
| 91 |
+
# running with trained model
|
| 92 |
+
python3 -u run.py
|
| 93 |
+
```
|
| 94 |
+
**run.py**
|
| 95 |
+
```python
|
| 96 |
+
from lzero.agent import SampledEfficientZeroAgent
|
| 97 |
+
from huggingface_ding import pull_model_from_hub
|
| 98 |
+
|
| 99 |
+
# Pull model from Hugggingface hub
|
| 100 |
+
policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/CartPole-v0-SampledEfficientZero")
|
| 101 |
+
# Instantiate the agent
|
| 102 |
+
agent = SampledEfficientZeroAgent(
|
| 103 |
+
env_id="CartPole-v0", exp_name="CartPole-v0-SampledEfficientZero", cfg=cfg.exp_config, policy_state_dict=policy_state_dict
|
| 104 |
+
)
|
| 105 |
+
# Continue training
|
| 106 |
+
agent.train(step=5000)
|
| 107 |
+
# Render the new agent performance
|
| 108 |
+
agent.deploy(enable_save_replay=True)
|
| 109 |
+
|
| 110 |
+
```
|
| 111 |
+
</details>
|
| 112 |
+
|
| 113 |
+
## Model Training
|
| 114 |
+
|
| 115 |
+
### Train the Model and Push to Huggingface_hub
|
| 116 |
+
|
| 117 |
+
<details close>
|
| 118 |
+
<summary>(Click for Details)</summary>
|
| 119 |
+
|
| 120 |
+
```shell
|
| 121 |
+
#Training Your Own Agent
|
| 122 |
+
python3 -u train.py
|
| 123 |
+
```
|
| 124 |
+
**train.py**
|
| 125 |
+
```python
|
| 126 |
+
from lzero.agent import SampledEfficientZeroAgent
|
| 127 |
+
from huggingface_ding import push_model_to_hub
|
| 128 |
+
|
| 129 |
+
# Instantiate the agent
|
| 130 |
+
agent = SampledEfficientZeroAgent(env_id="CartPole-v0", exp_name="CartPole-v0-SampledEfficientZero")
|
| 131 |
+
# Train the agent
|
| 132 |
+
return_ = agent.train(step=int(10000))
|
| 133 |
+
# Push model to huggingface hub
|
| 134 |
+
push_model_to_hub(
|
| 135 |
+
agent=agent.best,
|
| 136 |
+
env_name="OpenAI/Gym/Box2d",
|
| 137 |
+
task_name="CartPole-v0",
|
| 138 |
+
algo_name="SampledEfficientZero",
|
| 139 |
+
github_repo_url="https://github.com/opendilab/LightZero",
|
| 140 |
+
github_doc_model_url=None,
|
| 141 |
+
github_doc_env_url=None,
|
| 142 |
+
installation_guide='''
|
| 143 |
+
pip3 install DI-engine[common_env,video]
|
| 144 |
+
pip3 install LightZero
|
| 145 |
+
''',
|
| 146 |
+
usage_file_by_git_clone="./sampled_efficientzero/cartpole_sampled_efficientzero_deploy.py",
|
| 147 |
+
usage_file_by_huggingface_ding="./sampled_efficientzero/cartpole_sampled_efficientzero_download.py",
|
| 148 |
+
train_file="./sampled_efficientzero/cartpole_sampled_efficientzero.py",
|
| 149 |
+
repo_id="OpenDILabCommunity/CartPole-v0-SampledEfficientZero",
|
| 150 |
+
platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
|
| 151 |
+
model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
|
| 152 |
+
create_repo=True
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
```
|
| 156 |
+
</details>
|
| 157 |
+
|
| 158 |
+
**Configuration**
|
| 159 |
+
<details close>
|
| 160 |
+
<summary>(Click for Details)</summary>
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
```python
|
| 164 |
+
exp_config = {
|
| 165 |
+
'main_config': {
|
| 166 |
+
'exp_name': 'CartPole-v0-SampledEfficientZero',
|
| 167 |
+
'env': {
|
| 168 |
+
'env_id': 'CartPole-v0',
|
| 169 |
+
'continuous': False,
|
| 170 |
+
'manually_discretization': False,
|
| 171 |
+
'collector_env_num': 8,
|
| 172 |
+
'evaluator_env_num': 3,
|
| 173 |
+
'n_evaluator_episode': 3,
|
| 174 |
+
'manager': {
|
| 175 |
+
'shared_memory': False
|
| 176 |
+
}
|
| 177 |
+
},
|
| 178 |
+
'policy': {
|
| 179 |
+
'on_policy': False,
|
| 180 |
+
'cuda': True,
|
| 181 |
+
'multi_gpu': False,
|
| 182 |
+
'bp_update_sync': True,
|
| 183 |
+
'traj_len_inf': False,
|
| 184 |
+
'model': {
|
| 185 |
+
'observation_shape': 4,
|
| 186 |
+
'action_space_size': 2,
|
| 187 |
+
'continuous_action_space': False,
|
| 188 |
+
'num_of_sampled_actions': 2,
|
| 189 |
+
'model_type': 'mlp',
|
| 190 |
+
'lstm_hidden_size': 128,
|
| 191 |
+
'latent_state_dim': 128,
|
| 192 |
+
'discrete_action_encoding_type': 'one_hot',
|
| 193 |
+
'norm_type': 'BN'
|
| 194 |
+
},
|
| 195 |
+
'use_rnd_model': False,
|
| 196 |
+
'sampled_algo': True,
|
| 197 |
+
'gumbel_algo': False,
|
| 198 |
+
'mcts_ctree': True,
|
| 199 |
+
'collector_env_num': 8,
|
| 200 |
+
'evaluator_env_num': 3,
|
| 201 |
+
'env_type': 'not_board_games',
|
| 202 |
+
'action_type': 'fixed_action_space',
|
| 203 |
+
'battle_mode': 'play_with_bot_mode',
|
| 204 |
+
'monitor_extra_statistics': True,
|
| 205 |
+
'game_segment_length': 50,
|
| 206 |
+
'transform2string': False,
|
| 207 |
+
'gray_scale': False,
|
| 208 |
+
'use_augmentation': False,
|
| 209 |
+
'augmentation': ['shift', 'intensity'],
|
| 210 |
+
'ignore_done': False,
|
| 211 |
+
'update_per_collect': 100,
|
| 212 |
+
'model_update_ratio': 0.1,
|
| 213 |
+
'batch_size': 256,
|
| 214 |
+
'optim_type': 'Adam',
|
| 215 |
+
'learning_rate': 0.003,
|
| 216 |
+
'target_update_freq': 100,
|
| 217 |
+
'target_update_freq_for_intrinsic_reward': 1000,
|
| 218 |
+
'weight_decay': 0.0001,
|
| 219 |
+
'momentum': 0.9,
|
| 220 |
+
'grad_clip_value': 10,
|
| 221 |
+
'n_episode': 8,
|
| 222 |
+
'num_simulations': 25,
|
| 223 |
+
'discount_factor': 0.997,
|
| 224 |
+
'td_steps': 5,
|
| 225 |
+
'num_unroll_steps': 5,
|
| 226 |
+
'reward_loss_weight': 1,
|
| 227 |
+
'value_loss_weight': 0.25,
|
| 228 |
+
'policy_loss_weight': 1,
|
| 229 |
+
'policy_entropy_loss_weight': 0,
|
| 230 |
+
'ssl_loss_weight': 2,
|
| 231 |
+
'lr_piecewise_constant_decay': False,
|
| 232 |
+
'threshold_training_steps_for_final_lr': 50000,
|
| 233 |
+
'manual_temperature_decay': False,
|
| 234 |
+
'threshold_training_steps_for_final_temperature': 100000,
|
| 235 |
+
'fixed_temperature_value': 0.25,
|
| 236 |
+
'use_ture_chance_label_in_chance_encoder': False,
|
| 237 |
+
'use_priority': True,
|
| 238 |
+
'priority_prob_alpha': 0.6,
|
| 239 |
+
'priority_prob_beta': 0.4,
|
| 240 |
+
'root_dirichlet_alpha': 0.3,
|
| 241 |
+
'root_noise_weight': 0.25,
|
| 242 |
+
'random_collect_episode_num': 0,
|
| 243 |
+
'eps': {
|
| 244 |
+
'eps_greedy_exploration_in_collect': False,
|
| 245 |
+
'type': 'linear',
|
| 246 |
+
'start': 1.0,
|
| 247 |
+
'end': 0.05,
|
| 248 |
+
'decay': 100000
|
| 249 |
+
},
|
| 250 |
+
'cfg_type': 'SampledEfficientZeroPolicyDict',
|
| 251 |
+
'init_w': 0.003,
|
| 252 |
+
'normalize_prob_of_sampled_actions': False,
|
| 253 |
+
'policy_loss_type': 'cross_entropy',
|
| 254 |
+
'lstm_horizon_len': 5,
|
| 255 |
+
'cos_lr_scheduler': False,
|
| 256 |
+
'reanalyze_ratio': 0.0,
|
| 257 |
+
'eval_freq': 200,
|
| 258 |
+
'replay_buffer_size': 1000000
|
| 259 |
+
},
|
| 260 |
+
'wandb_logger': {
|
| 261 |
+
'gradient_logger': False,
|
| 262 |
+
'video_logger': False,
|
| 263 |
+
'plot_logger': False,
|
| 264 |
+
'action_logger': False,
|
| 265 |
+
'return_logger': False
|
| 266 |
+
}
|
| 267 |
+
},
|
| 268 |
+
'create_config': {
|
| 269 |
+
'env': {
|
| 270 |
+
'type':
|
| 271 |
+
'cartpole_lightzero',
|
| 272 |
+
'import_names':
|
| 273 |
+
['zoo.classic_control.cartpole.envs.cartpole_lightzero_env']
|
| 274 |
+
},
|
| 275 |
+
'env_manager': {
|
| 276 |
+
'type': 'subprocess'
|
| 277 |
+
},
|
| 278 |
+
'policy': {
|
| 279 |
+
'type': 'sampled_efficientzero',
|
| 280 |
+
'import_names': ['lzero.policy.sampled_efficientzero']
|
| 281 |
+
}
|
| 282 |
+
}
|
| 283 |
+
}
|
| 284 |
+
|
| 285 |
+
```
|
| 286 |
+
</details>
|
| 287 |
+
|
| 288 |
+
**Training Procedure**
|
| 289 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 290 |
+
- **Weights & Biases (wandb):** [monitor link](<TODO>)
|
| 291 |
+
|
| 292 |
+
## Model Information
|
| 293 |
+
<!-- Provide the basic links for the model. -->
|
| 294 |
+
- **Github Repository:** [repo link](https://github.com/opendilab/LightZero)
|
| 295 |
+
- **Doc**: [Algorithm link](<TODO>)
|
| 296 |
+
- **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/CartPole-v0-SampledEfficientZero/blob/main/policy_config.py)
|
| 297 |
+
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/CartPole-v0-SampledEfficientZero/blob/main/replay.mp4)
|
| 298 |
+
<!-- Provide the size information for the model. -->
|
| 299 |
+
- **Parameters total size:** 14064.13 KB
|
| 300 |
+
- **Last Update Date:** 2023-12-19
|
| 301 |
+
|
| 302 |
+
## Environments
|
| 303 |
+
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|
| 304 |
+
- **Benchmark:** OpenAI/Gym/Box2d
|
| 305 |
+
- **Task:** CartPole-v0
|
| 306 |
+
- **Gym version:** 0.25.1
|
| 307 |
+
- **DI-engine version:** v0.5.0
|
| 308 |
+
- **PyTorch version:** 2.0.1+cu117
|
| 309 |
+
- **Doc**: [Environments link](<TODO>)
|