Update README.md
Browse files
README.md
CHANGED
|
@@ -17,7 +17,7 @@ pipeline_tag: visual-question-answering
|
|
| 17 |
|
| 18 |
> _Two interns holding hands, symbolizing the integration of InternViT and InternLM._
|
| 19 |
|
| 20 |
-
\[[InternVL 1.5 Technical Report](https://arxiv.org/abs/2404.16821)\] \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
|
| 21 |
|
| 22 |
We introduce InternVL 1.5, an open-source multimodal large language model (MLLM) to bridge the capability gap between open-source and proprietary commercial models in multimodal understanding.
|
| 23 |
We introduce three simple designs:
|
|
@@ -34,13 +34,10 @@ We introduce three simple designs:
|
|
| 34 |
- Params: 25.5B
|
| 35 |
|
| 36 |
- **Training Strategy:**
|
| 37 |
-
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
- Learnable Component: ViT + MLP + LLM
|
| 42 |
-
- Data: Please see our technical report.
|
| 43 |
-
|
| 44 |
## Released Models
|
| 45 |
|
| 46 |
| Model | Vision Foundation Model | Release Date |Note |
|
|
@@ -50,6 +47,10 @@ We introduce three simple designs:
|
|
| 50 |
| InternVL-Chat-V1.2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) ) |InternViT-6B-448px-V1-2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)) |2024.02.11 | scaling up LLM to 34B |
|
| 51 |
| InternVL-Chat-V1.1(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)) |InternViT-6B-448px-V1-0(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0)) |2024.01.24 | support Chinese and stronger OCR |
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
## Performance
|
| 54 |
|
| 55 |

|
|
@@ -58,29 +59,12 @@ We introduce three simple designs:
|
|
| 58 |
|
| 59 |
## Examples
|
| 60 |
|
| 61 |
-

|
| 68 |
-
|
| 69 |
-

|
| 70 |
-
|
| 71 |
-

|
| 72 |
-
|
| 73 |
-

|
| 74 |
-
|
| 75 |
-

|
| 76 |
-
|
| 77 |
-

|
| 78 |
-
|
| 79 |
-

|
| 80 |
-
|
| 81 |
-

|
| 82 |
-
|
| 83 |
-
|
| 84 |
|
| 85 |
## Model Usage
|
| 86 |
|
|
|
|
| 17 |
|
| 18 |
> _Two interns holding hands, symbolizing the integration of InternViT and InternLM._
|
| 19 |
|
| 20 |
+
\[[InternVL 1.5 Technical Report](https://arxiv.org/abs/2404.16821)\] \[[CVPR Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
|
| 21 |
|
| 22 |
We introduce InternVL 1.5, an open-source multimodal large language model (MLLM) to bridge the capability gap between open-source and proprietary commercial models in multimodal understanding.
|
| 23 |
We introduce three simple designs:
|
|
|
|
| 34 |
- Params: 25.5B
|
| 35 |
|
| 36 |
- **Training Strategy:**
|
| 37 |
+
- Learnable component in the pretraining stage: ViT + MLP
|
| 38 |
+
- Learnable component in the finetuning stage: ViT + MLP + LLM
|
| 39 |
+
- For more details on training hyperparameters, take a look at our code: [pretrain](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/shell/internlm2_20b_dynamic/internvl_chat_v1_5_internlm2_20b_dynamic_res_pretrain.sh) | [finetune](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/shell/internlm2_20b_dynamic/internvl_chat_v1_5_internlm2_20b_dynamic_res_finetune.sh)
|
| 40 |
+
|
|
|
|
|
|
|
|
|
|
| 41 |
## Released Models
|
| 42 |
|
| 43 |
| Model | Vision Foundation Model | Release Date |Note |
|
|
|
|
| 47 |
| InternVL-Chat-V1.2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) ) |InternViT-6B-448px-V1-2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)) |2024.02.11 | scaling up LLM to 34B |
|
| 48 |
| InternVL-Chat-V1.1(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)) |InternViT-6B-448px-V1-0(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0)) |2024.01.24 | support Chinese and stronger OCR |
|
| 49 |
|
| 50 |
+
## Architecture
|
| 51 |
+
|
| 52 |
+

|
| 53 |
+
|
| 54 |
## Performance
|
| 55 |
|
| 56 |

|
|
|
|
| 59 |
|
| 60 |
## Examples
|
| 61 |
|
| 62 |
+

|
| 63 |
+

|
| 64 |
+

|
| 65 |
+

|
| 66 |
+

|
| 67 |
+

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
## Model Usage
|
| 70 |
|