Commit 
							
							·
						
						bc6e7dd
	
1
								Parent(s):
							
							7397626
								
Upload codebase
Browse files- config.json +75 -0
 - configuration_transnormer.py +73 -0
 - generation_config.json +10 -0
 - lightning_attention.py +540 -0
 - lightning_attention2.py +540 -0
 - modeling_transnormer.py +943 -0
 - norm.py +44 -0
 - srmsnorm_triton.py +202 -0
 - tokenization_transnormerllm.py +240 -0
 - tokenizer_config.json +10 -0
 - transnormer_100k.tiktoken +0 -0
 - utils.py +166 -0
 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1,75 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_name_or_path": "15b-50B",
         
     | 
| 3 | 
         
            +
              "add_bos_token": false,
         
     | 
| 4 | 
         
            +
              "architectures": [
         
     | 
| 5 | 
         
            +
                "TransnormerForCausalLM"
         
     | 
| 6 | 
         
            +
              ],
         
     | 
| 7 | 
         
            +
              "auto_map": {
         
     | 
| 8 | 
         
            +
                "AutoConfig": "configuration_transnormer.TransnormerConfig",
         
     | 
| 9 | 
         
            +
                "AutoModelForCausalLM": "modeling_transnormer.TransnormerForCausalLM"
         
     | 
| 10 | 
         
            +
              },
         
     | 
| 11 | 
         
            +
              "bias": false,
         
     | 
| 12 | 
         
            +
              "bos_token_id": 100261,
         
     | 
| 13 | 
         
            +
              "decoder_attention_heads": 40,
         
     | 
| 14 | 
         
            +
              "decoder_embed_dim": 5120,
         
     | 
| 15 | 
         
            +
              "decoder_layers": 42,
         
     | 
| 16 | 
         
            +
              "eos_token_id": 100257,
         
     | 
| 17 | 
         
            +
              "gate_dim": 16,
         
     | 
| 18 | 
         
            +
              "glu_dim": 15360,
         
     | 
| 19 | 
         
            +
              "hidden_dim": 5120,
         
     | 
| 20 | 
         
            +
              "init_std": 0.02,
         
     | 
| 21 | 
         
            +
              "linear_act_fun": "swish",
         
     | 
| 22 | 
         
            +
              "linear_use_lrpe": 0,
         
     | 
| 23 | 
         
            +
              "linear_use_lrpe_list": [
         
     | 
| 24 | 
         
            +
                1,
         
     | 
| 25 | 
         
            +
                0,
         
     | 
| 26 | 
         
            +
                0,
         
     | 
| 27 | 
         
            +
                0,
         
     | 
| 28 | 
         
            +
                0,
         
     | 
| 29 | 
         
            +
                0,
         
     | 
| 30 | 
         
            +
                0,
         
     | 
| 31 | 
         
            +
                0,
         
     | 
| 32 | 
         
            +
                0,
         
     | 
| 33 | 
         
            +
                0,
         
     | 
| 34 | 
         
            +
                0,
         
     | 
| 35 | 
         
            +
                0,
         
     | 
| 36 | 
         
            +
                0,
         
     | 
| 37 | 
         
            +
                0,
         
     | 
| 38 | 
         
            +
                0,
         
     | 
| 39 | 
         
            +
                0,
         
     | 
| 40 | 
         
            +
                0,
         
     | 
| 41 | 
         
            +
                0,
         
     | 
| 42 | 
         
            +
                0,
         
     | 
| 43 | 
         
            +
                0,
         
     | 
| 44 | 
         
            +
                0,
         
     | 
| 45 | 
         
            +
                0,
         
     | 
| 46 | 
         
            +
                0,
         
     | 
| 47 | 
         
            +
                0,
         
     | 
| 48 | 
         
            +
                0,
         
     | 
| 49 | 
         
            +
                0,
         
     | 
| 50 | 
         
            +
                0,
         
     | 
| 51 | 
         
            +
                0,
         
     | 
| 52 | 
         
            +
                0,
         
     | 
| 53 | 
         
            +
                0,
         
     | 
| 54 | 
         
            +
                0,
         
     | 
| 55 | 
         
            +
                0,
         
     | 
| 56 | 
         
            +
                0,
         
     | 
| 57 | 
         
            +
                0,
         
     | 
| 58 | 
         
            +
                0,
         
     | 
| 59 | 
         
            +
                0,
         
     | 
| 60 | 
         
            +
                0,
         
     | 
| 61 | 
         
            +
                0,
         
     | 
| 62 | 
         
            +
                0,
         
     | 
| 63 | 
         
            +
                0,
         
     | 
| 64 | 
         
            +
                0,
         
     | 
| 65 | 
         
            +
                0
         
     | 
| 66 | 
         
            +
              ],
         
     | 
| 67 | 
         
            +
              "model_type": "transnormer",
         
     | 
| 68 | 
         
            +
              "no_scale_embedding": false,
         
     | 
| 69 | 
         
            +
              "norm_type": "simplermsnorm",
         
     | 
| 70 | 
         
            +
              "pad_token_id": 100262,
         
     | 
| 71 | 
         
            +
              "torch_dtype": "bfloat16",
         
     | 
| 72 | 
         
            +
              "transformers_version": "4.33.1",
         
     | 
| 73 | 
         
            +
              "use_cache": true,
         
     | 
| 74 | 
         
            +
              "vocab_size": 100280
         
     | 
| 75 | 
         
            +
            }
         
     | 
    	
        configuration_transnormer.py
    ADDED
    
    | 
         @@ -0,0 +1,73 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #    Copyright 2024 OpenNLPLab
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            #    you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            #    You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #    Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            #    See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            #    limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            # coding=utf-8
         
     | 
| 16 | 
         
            +
            """ Transnormer configuration"""
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 19 | 
         
            +
            from transformers.utils import logging
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            class TransnormerConfig(PretrainedConfig):
         
     | 
| 25 | 
         
            +
                model_type = "transnormer"
         
     | 
| 26 | 
         
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                def __init__(
         
     | 
| 29 | 
         
            +
                    self,
         
     | 
| 30 | 
         
            +
                    pad_token_id=0,
         
     | 
| 31 | 
         
            +
                    bos_token_id=1,
         
     | 
| 32 | 
         
            +
                    eos_token_id=2,
         
     | 
| 33 | 
         
            +
                    vocab_size=64000,
         
     | 
| 34 | 
         
            +
                    use_cache=True,
         
     | 
| 35 | 
         
            +
                    init_std=0.02,
         
     | 
| 36 | 
         
            +
                    # model config
         
     | 
| 37 | 
         
            +
                    decoder_embed_dim=1024,
         
     | 
| 38 | 
         
            +
                    decoder_layers=24,
         
     | 
| 39 | 
         
            +
                    decoder_attention_heads=8,
         
     | 
| 40 | 
         
            +
                    no_scale_embedding=False,
         
     | 
| 41 | 
         
            +
                    add_bos_token=False,
         
     | 
| 42 | 
         
            +
                    norm_type="simplermsnorm",
         
     | 
| 43 | 
         
            +
                    linear_use_lrpe_list=[],
         
     | 
| 44 | 
         
            +
                    hidden_dim=1024,
         
     | 
| 45 | 
         
            +
                    linear_act_fun="silu",
         
     | 
| 46 | 
         
            +
                    glu_dim=2816,
         
     | 
| 47 | 
         
            +
                    bias=False,
         
     | 
| 48 | 
         
            +
                    gate_dim=16,
         
     | 
| 49 | 
         
            +
                    **kwargs,
         
     | 
| 50 | 
         
            +
                ):
         
     | 
| 51 | 
         
            +
                    super().__init__(
         
     | 
| 52 | 
         
            +
                        pad_token_id=pad_token_id,
         
     | 
| 53 | 
         
            +
                        bos_token_id=bos_token_id,
         
     | 
| 54 | 
         
            +
                        eos_token_id=eos_token_id,
         
     | 
| 55 | 
         
            +
                        **kwargs,
         
     | 
| 56 | 
         
            +
                    )
         
     | 
| 57 | 
         
            +
                    # hf origin
         
     | 
| 58 | 
         
            +
                    self.vocab_size = vocab_size
         
     | 
| 59 | 
         
            +
                    self.use_cache = use_cache
         
     | 
| 60 | 
         
            +
                    self.init_std = init_std
         
     | 
| 61 | 
         
            +
                    # add
         
     | 
| 62 | 
         
            +
                    self.decoder_embed_dim = decoder_embed_dim
         
     | 
| 63 | 
         
            +
                    self.decoder_layers = decoder_layers
         
     | 
| 64 | 
         
            +
                    self.decoder_attention_heads = decoder_attention_heads
         
     | 
| 65 | 
         
            +
                    self.no_scale_embedding = no_scale_embedding
         
     | 
| 66 | 
         
            +
                    self.add_bos_token = add_bos_token
         
     | 
| 67 | 
         
            +
                    self.norm_type = norm_type
         
     | 
| 68 | 
         
            +
                    self.linear_use_lrpe_list = linear_use_lrpe_list
         
     | 
| 69 | 
         
            +
                    self.hidden_dim = hidden_dim
         
     | 
| 70 | 
         
            +
                    self.linear_act_fun = linear_act_fun
         
     | 
| 71 | 
         
            +
                    self.glu_dim = glu_dim
         
     | 
| 72 | 
         
            +
                    self.bias = bias
         
     | 
| 73 | 
         
            +
                    self.gate_dim = gate_dim
         
     | 
    	
        generation_config.json
    ADDED
    
    | 
         @@ -0,0 +1,10 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_from_model_config": true,
         
     | 
| 3 | 
         
            +
              "bos_token_id": 100261,
         
     | 
| 4 | 
         
            +
              "do_sample": true,
         
     | 
| 5 | 
         
            +
              "eos_token_id": 100257,
         
     | 
| 6 | 
         
            +
              "max_new_tokens": 8192,
         
     | 
| 7 | 
         
            +
              "pad_token_id": 100262,
         
     | 
| 8 | 
         
            +
              "repetition_penalty": 1.03,
         
     | 
| 9 | 
         
            +
              "transformers_version": "4.33.1"
         
     | 
| 10 | 
         
            +
            }
         
     | 
    	
        lightning_attention.py
    ADDED
    
    | 
         @@ -0,0 +1,540 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #    Copyright 2024 OpenNLPLab
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            #    you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            #    You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #    Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            #    See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            #    limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            # coding=utf-8
         
     | 
| 16 | 
         
            +
            import torch
         
     | 
| 17 | 
         
            +
            import triton
         
     | 
| 18 | 
         
            +
            import triton.language as tl
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            @triton.jit
         
     | 
| 22 | 
         
            +
            def _fwd_kernel(
         
     | 
| 23 | 
         
            +
                Q,
         
     | 
| 24 | 
         
            +
                K,
         
     | 
| 25 | 
         
            +
                V,
         
     | 
| 26 | 
         
            +
                Out,
         
     | 
| 27 | 
         
            +
                S,
         
     | 
| 28 | 
         
            +
                stride_qz,
         
     | 
| 29 | 
         
            +
                stride_qh,
         
     | 
| 30 | 
         
            +
                stride_qm,
         
     | 
| 31 | 
         
            +
                stride_qk,
         
     | 
| 32 | 
         
            +
                stride_kz,
         
     | 
| 33 | 
         
            +
                stride_kh,
         
     | 
| 34 | 
         
            +
                stride_kn,
         
     | 
| 35 | 
         
            +
                stride_kk,
         
     | 
| 36 | 
         
            +
                stride_vz,
         
     | 
| 37 | 
         
            +
                stride_vh,
         
     | 
| 38 | 
         
            +
                stride_vn,
         
     | 
| 39 | 
         
            +
                stride_ve,
         
     | 
| 40 | 
         
            +
                stride_oz,
         
     | 
| 41 | 
         
            +
                stride_oh,
         
     | 
| 42 | 
         
            +
                stride_om,
         
     | 
| 43 | 
         
            +
                stride_oe,
         
     | 
| 44 | 
         
            +
                stride_sh,
         
     | 
| 45 | 
         
            +
                Z,
         
     | 
| 46 | 
         
            +
                H,
         
     | 
| 47 | 
         
            +
                N_CTX,
         
     | 
| 48 | 
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 49 | 
         
            +
                BLOCK_DMODEL_QK: tl.constexpr,
         
     | 
| 50 | 
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 51 | 
         
            +
                BLOCK_DMODEL_V: tl.constexpr,
         
     | 
| 52 | 
         
            +
                IS_CAUSAL: tl.constexpr,
         
     | 
| 53 | 
         
            +
                USE_DECAY: tl.constexpr,
         
     | 
| 54 | 
         
            +
            ):
         
     | 
| 55 | 
         
            +
                start_m = tl.program_id(0)
         
     | 
| 56 | 
         
            +
                off_hz = tl.program_id(1)
         
     | 
| 57 | 
         
            +
                off_h = off_hz % H
         
     | 
| 58 | 
         
            +
                # initialize offsets
         
     | 
| 59 | 
         
            +
                offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
         
     | 
| 60 | 
         
            +
                offs_n = tl.arange(0, BLOCK_N)
         
     | 
| 61 | 
         
            +
                offs_k = tl.arange(0, BLOCK_DMODEL_QK)
         
     | 
| 62 | 
         
            +
                offs_e = tl.arange(0, BLOCK_DMODEL_V)
         
     | 
| 63 | 
         
            +
                # get current offset of q k v
         
     | 
| 64 | 
         
            +
                off_q = (off_hz * stride_qh + offs_m[:, None] * stride_qm +
         
     | 
| 65 | 
         
            +
                         offs_k[None, :] * stride_qk)
         
     | 
| 66 | 
         
            +
                off_k = (off_hz * stride_kh + offs_n[:, None] * stride_kn +
         
     | 
| 67 | 
         
            +
                         offs_k[None, :] * stride_kk)
         
     | 
| 68 | 
         
            +
                off_v = (off_hz * stride_vh + offs_n[:, None] * stride_vn +
         
     | 
| 69 | 
         
            +
                         offs_e[None, :] * stride_ve)
         
     | 
| 70 | 
         
            +
                off_o = (off_hz * stride_oh + offs_m[:, None] * stride_om +
         
     | 
| 71 | 
         
            +
                         offs_e[None, :] * stride_oe)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                # Initialize pointers to Q, K, V
         
     | 
| 74 | 
         
            +
                q_ptrs = Q + off_q
         
     | 
| 75 | 
         
            +
                k_ptrs = K + off_k
         
     | 
| 76 | 
         
            +
                v_ptrs = V + off_v
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                # initialize pointer to m and l
         
     | 
| 79 | 
         
            +
                acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_V], dtype=tl.float32)
         
     | 
| 80 | 
         
            +
                # load q: it will stay in SRAM throughout
         
     | 
| 81 | 
         
            +
                q = tl.load(q_ptrs, mask=offs_m[:, None] < N_CTX, other=0.0)
         
     | 
| 82 | 
         
            +
                # loop over k, v and update accumulator
         
     | 
| 83 | 
         
            +
                lo = 0
         
     | 
| 84 | 
         
            +
                # print(start_m)
         
     | 
| 85 | 
         
            +
                hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
         
     | 
| 86 | 
         
            +
                for start_n in range(lo, hi, BLOCK_N):
         
     | 
| 87 | 
         
            +
                    # -- load k, v --
         
     | 
| 88 | 
         
            +
                    k = tl.load(
         
     | 
| 89 | 
         
            +
                        k_ptrs + start_n * stride_kn,
         
     | 
| 90 | 
         
            +
                        mask=(start_n + offs_n)[:, None] < N_CTX,
         
     | 
| 91 | 
         
            +
                        other=0.0,
         
     | 
| 92 | 
         
            +
                    )
         
     | 
| 93 | 
         
            +
                    v = tl.load(
         
     | 
| 94 | 
         
            +
                        v_ptrs + start_n * stride_vn,
         
     | 
| 95 | 
         
            +
                        mask=(start_n + offs_n)[:, None] < N_CTX,
         
     | 
| 96 | 
         
            +
                        other=0.0,
         
     | 
| 97 | 
         
            +
                    )
         
     | 
| 98 | 
         
            +
                    # -- compute qk ---
         
     | 
| 99 | 
         
            +
                    # qk = tl.dot(q, k)
         
     | 
| 100 | 
         
            +
                    qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
         
     | 
| 101 | 
         
            +
                    # qk += tl.dot(q, k, trans_b=True)
         
     | 
| 102 | 
         
            +
                    qk += tl.dot(q, tl.trans(k))
         
     | 
| 103 | 
         
            +
                    if IS_CAUSAL:
         
     | 
| 104 | 
         
            +
                        index = offs_m[:, None] - (start_n + offs_n[None, :])
         
     | 
| 105 | 
         
            +
                        if USE_DECAY:
         
     | 
| 106 | 
         
            +
                            S_block_ptr = S + off_h * stride_sh
         
     | 
| 107 | 
         
            +
                            s = tl.load(S_block_ptr)
         
     | 
| 108 | 
         
            +
                            s_index = s * index
         
     | 
| 109 | 
         
            +
                            s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
         
     | 
| 110 | 
         
            +
                            qk = tl.exp(s_index) * qk
         
     | 
| 111 | 
         
            +
                        else:
         
     | 
| 112 | 
         
            +
                            qk = tl.where(index >= 0, qk, 0)
         
     | 
| 113 | 
         
            +
                    acc += tl.dot(qk, v.to(qk.dtype))
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                out_ptrs = Out + off_o
         
     | 
| 116 | 
         
            +
                tl.store(out_ptrs, acc.to(q.dtype), mask=offs_m[:, None] < N_CTX)
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            @triton.jit
         
     | 
| 120 | 
         
            +
            def _bwd_kernel_kv(
         
     | 
| 121 | 
         
            +
                Q,
         
     | 
| 122 | 
         
            +
                K,
         
     | 
| 123 | 
         
            +
                V,
         
     | 
| 124 | 
         
            +
                S,
         
     | 
| 125 | 
         
            +
                DO,
         
     | 
| 126 | 
         
            +
                DQ,
         
     | 
| 127 | 
         
            +
                DK,
         
     | 
| 128 | 
         
            +
                DV,
         
     | 
| 129 | 
         
            +
                stride_qz,
         
     | 
| 130 | 
         
            +
                stride_qh,
         
     | 
| 131 | 
         
            +
                stride_qm,
         
     | 
| 132 | 
         
            +
                stride_qk,
         
     | 
| 133 | 
         
            +
                stride_kz,
         
     | 
| 134 | 
         
            +
                stride_kh,
         
     | 
| 135 | 
         
            +
                stride_kn,
         
     | 
| 136 | 
         
            +
                stride_kk,
         
     | 
| 137 | 
         
            +
                stride_vz,
         
     | 
| 138 | 
         
            +
                stride_vh,
         
     | 
| 139 | 
         
            +
                stride_vn,
         
     | 
| 140 | 
         
            +
                stride_ve,
         
     | 
| 141 | 
         
            +
                stride_oz,
         
     | 
| 142 | 
         
            +
                stride_oh,
         
     | 
| 143 | 
         
            +
                stride_om,
         
     | 
| 144 | 
         
            +
                stride_oe,
         
     | 
| 145 | 
         
            +
                stride_sh,
         
     | 
| 146 | 
         
            +
                Z,
         
     | 
| 147 | 
         
            +
                H,
         
     | 
| 148 | 
         
            +
                N_CTX,
         
     | 
| 149 | 
         
            +
                num_block,
         
     | 
| 150 | 
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 151 | 
         
            +
                BLOCK_DMODEL_QK: tl.constexpr,
         
     | 
| 152 | 
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 153 | 
         
            +
                BLOCK_DMODEL_V: tl.constexpr,
         
     | 
| 154 | 
         
            +
                CAUSAL: tl.constexpr,
         
     | 
| 155 | 
         
            +
                USE_DECAY: tl.constexpr,
         
     | 
| 156 | 
         
            +
            ):
         
     | 
| 157 | 
         
            +
                start_n = tl.program_id(0)
         
     | 
| 158 | 
         
            +
                off_hz = tl.program_id(1)
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                off_z = off_hz // H
         
     | 
| 161 | 
         
            +
                off_h = off_hz % H
         
     | 
| 162 | 
         
            +
                # offset pointers for batch/head
         
     | 
| 163 | 
         
            +
                Q += off_z * stride_qz + off_h * stride_qh
         
     | 
| 164 | 
         
            +
                K += off_z * stride_kz + off_h * stride_kh
         
     | 
| 165 | 
         
            +
                V += off_z * stride_vz + off_h * stride_vh
         
     | 
| 166 | 
         
            +
                DO += off_z * stride_oz + off_h * stride_oh
         
     | 
| 167 | 
         
            +
                DQ += off_z * stride_qz + off_h * stride_qh
         
     | 
| 168 | 
         
            +
                DK += off_z * stride_kz + off_h * stride_kh
         
     | 
| 169 | 
         
            +
                DV += off_z * stride_vz + off_h * stride_vh
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                # start of q
         
     | 
| 172 | 
         
            +
                if CAUSAL:
         
     | 
| 173 | 
         
            +
                    lo = start_n * BLOCK_M
         
     | 
| 174 | 
         
            +
                else:
         
     | 
| 175 | 
         
            +
                    lo = 0
         
     | 
| 176 | 
         
            +
                # initialize row/col offsets
         
     | 
| 177 | 
         
            +
                # seqlence offset
         
     | 
| 178 | 
         
            +
                offs_qm = lo + tl.arange(0, BLOCK_M)
         
     | 
| 179 | 
         
            +
                offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
         
     | 
| 180 | 
         
            +
                # feature offset
         
     | 
| 181 | 
         
            +
                offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
         
     | 
| 182 | 
         
            +
                offs_ve = tl.arange(0, BLOCK_DMODEL_V)
         
     | 
| 183 | 
         
            +
                # row block index
         
     | 
| 184 | 
         
            +
                offs_m = tl.arange(0, BLOCK_M)
         
     | 
| 185 | 
         
            +
                # initialize pointers to value-like data
         
     | 
| 186 | 
         
            +
                q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_qkk[None, :] * stride_qk)
         
     | 
| 187 | 
         
            +
                k_ptrs = K + (offs_kvn[:, None] * stride_kn +
         
     | 
| 188 | 
         
            +
                              offs_qkk[None, :] * stride_kk)
         
     | 
| 189 | 
         
            +
                v_ptrs = V + (offs_kvn[:, None] * stride_vn + offs_ve[None, :] * stride_ve)
         
     | 
| 190 | 
         
            +
                do_ptrs = DO + (offs_qm[:, None] * stride_om +
         
     | 
| 191 | 
         
            +
                                offs_ve[None, :] * stride_oe)
         
     | 
| 192 | 
         
            +
                dq_ptrs = DQ + (offs_qm[:, None] * stride_qm +
         
     | 
| 193 | 
         
            +
                                offs_qkk[None, :] * stride_qk)
         
     | 
| 194 | 
         
            +
                # initialize dv amd dk
         
     | 
| 195 | 
         
            +
                dv = tl.zeros([BLOCK_N, BLOCK_DMODEL_V], dtype=tl.float32)
         
     | 
| 196 | 
         
            +
                dk = tl.zeros([BLOCK_N, BLOCK_DMODEL_QK], dtype=tl.float32)
         
     | 
| 197 | 
         
            +
                # k and v stay in SRAM throughout
         
     | 
| 198 | 
         
            +
                k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
         
     | 
| 199 | 
         
            +
                v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
         
     | 
| 200 | 
         
            +
                # loop over rows
         
     | 
| 201 | 
         
            +
                for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
         
     | 
| 202 | 
         
            +
                    offs_m_curr = start_m + offs_m
         
     | 
| 203 | 
         
            +
                    # load q, k, v, do on-chip
         
     | 
| 204 | 
         
            +
                    q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
         
     | 
| 205 | 
         
            +
                    qk = tl.dot(q, tl.trans(k))
         
     | 
| 206 | 
         
            +
                    # qk = tl.dot(q, k, trans_b=True)
         
     | 
| 207 | 
         
            +
                    if CAUSAL:
         
     | 
| 208 | 
         
            +
                        index = offs_m_curr[:, None] - offs_kvn[None, :]
         
     | 
| 209 | 
         
            +
                        if USE_DECAY:
         
     | 
| 210 | 
         
            +
                            S_block_ptr = S + off_h * stride_sh
         
     | 
| 211 | 
         
            +
                            s = tl.load(S_block_ptr)
         
     | 
| 212 | 
         
            +
                            s_index = s * index
         
     | 
| 213 | 
         
            +
                            s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
         
     | 
| 214 | 
         
            +
                            s = tl.exp(s_index)
         
     | 
| 215 | 
         
            +
                            qk = qk * s
         
     | 
| 216 | 
         
            +
                        else:
         
     | 
| 217 | 
         
            +
                            qk = tl.where(index >= 0, qk, 0)
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                    p = qk
         
     | 
| 220 | 
         
            +
                    # compute dv
         
     | 
| 221 | 
         
            +
                    do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
         
     | 
| 222 | 
         
            +
                    dv += tl.dot(tl.trans(p.to(do.dtype)), do)
         
     | 
| 223 | 
         
            +
                    dp = tl.dot(do, tl.trans(v).to(do.dtype))
         
     | 
| 224 | 
         
            +
                    if CAUSAL:
         
     | 
| 225 | 
         
            +
                        if USE_DECAY:
         
     | 
| 226 | 
         
            +
                            dp = dp * s
         
     | 
| 227 | 
         
            +
                        else:
         
     | 
| 228 | 
         
            +
                            dp = tl.where(index >= 0, dp, 0)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    dk += tl.dot(tl.trans(dp.to(q.dtype)), q).to(tl.float32)
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    # increment pointers
         
     | 
| 233 | 
         
            +
                    q_ptrs += BLOCK_M * stride_qm
         
     | 
| 234 | 
         
            +
                    do_ptrs += BLOCK_M * stride_om
         
     | 
| 235 | 
         
            +
                # write-back
         
     | 
| 236 | 
         
            +
                dv_ptrs = DV + (offs_kvn[:, None] * stride_vn +
         
     | 
| 237 | 
         
            +
                                offs_ve[None, :] * stride_ve)
         
     | 
| 238 | 
         
            +
                dk_ptrs = DK + (offs_kvn[:, None] * stride_kn +
         
     | 
| 239 | 
         
            +
                                offs_qkk[None, :] * stride_kk)
         
     | 
| 240 | 
         
            +
                tl.store(dv_ptrs, dv, mask=offs_kvn[:, None] < N_CTX)
         
     | 
| 241 | 
         
            +
                tl.store(dk_ptrs, dk, mask=offs_kvn[:, None] < N_CTX)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
            @triton.jit
         
     | 
| 245 | 
         
            +
            def _bwd_kernel_q(
         
     | 
| 246 | 
         
            +
                Q,
         
     | 
| 247 | 
         
            +
                K,
         
     | 
| 248 | 
         
            +
                V,
         
     | 
| 249 | 
         
            +
                S,
         
     | 
| 250 | 
         
            +
                DO,
         
     | 
| 251 | 
         
            +
                DQ,
         
     | 
| 252 | 
         
            +
                DK,
         
     | 
| 253 | 
         
            +
                DV,
         
     | 
| 254 | 
         
            +
                stride_qz,
         
     | 
| 255 | 
         
            +
                stride_qh,
         
     | 
| 256 | 
         
            +
                stride_qm,
         
     | 
| 257 | 
         
            +
                stride_qk,
         
     | 
| 258 | 
         
            +
                stride_kz,
         
     | 
| 259 | 
         
            +
                stride_kh,
         
     | 
| 260 | 
         
            +
                stride_kn,
         
     | 
| 261 | 
         
            +
                stride_kk,
         
     | 
| 262 | 
         
            +
                stride_vz,
         
     | 
| 263 | 
         
            +
                stride_vh,
         
     | 
| 264 | 
         
            +
                stride_vn,
         
     | 
| 265 | 
         
            +
                stride_ve,
         
     | 
| 266 | 
         
            +
                stride_oz,
         
     | 
| 267 | 
         
            +
                stride_oh,
         
     | 
| 268 | 
         
            +
                stride_om,
         
     | 
| 269 | 
         
            +
                stride_oe,
         
     | 
| 270 | 
         
            +
                stride_sh,
         
     | 
| 271 | 
         
            +
                Z,
         
     | 
| 272 | 
         
            +
                H,
         
     | 
| 273 | 
         
            +
                N_CTX,
         
     | 
| 274 | 
         
            +
                num_block,
         
     | 
| 275 | 
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 276 | 
         
            +
                BLOCK_DMODEL_QK: tl.constexpr,
         
     | 
| 277 | 
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 278 | 
         
            +
                BLOCK_DMODEL_V: tl.constexpr,
         
     | 
| 279 | 
         
            +
                CAUSAL: tl.constexpr,
         
     | 
| 280 | 
         
            +
                USE_DECAY: tl.constexpr,
         
     | 
| 281 | 
         
            +
            ):
         
     | 
| 282 | 
         
            +
                start_m = tl.program_id(0)
         
     | 
| 283 | 
         
            +
                off_hz = tl.program_id(1)
         
     | 
| 284 | 
         
            +
                off_z = off_hz // H
         
     | 
| 285 | 
         
            +
                off_h = off_hz % H
         
     | 
| 286 | 
         
            +
                # offset pointers for batch/head
         
     | 
| 287 | 
         
            +
                K += off_z * stride_kz + off_h * stride_kh
         
     | 
| 288 | 
         
            +
                V += off_z * stride_vz + off_h * stride_vh
         
     | 
| 289 | 
         
            +
                DO += off_z * stride_oz + off_h * stride_oh
         
     | 
| 290 | 
         
            +
                DQ += off_z * stride_qz + off_h * stride_qh
         
     | 
| 291 | 
         
            +
                # feature offset
         
     | 
| 292 | 
         
            +
                offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
         
     | 
| 293 | 
         
            +
                offs_ve = tl.arange(0, BLOCK_DMODEL_V)
         
     | 
| 294 | 
         
            +
                # row block index
         
     | 
| 295 | 
         
            +
                offs_m = tl.arange(0, BLOCK_M)
         
     | 
| 296 | 
         
            +
                # row block index
         
     | 
| 297 | 
         
            +
                offs_qm = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
         
     | 
| 298 | 
         
            +
                # do
         
     | 
| 299 | 
         
            +
                do_ptrs = DO + (offs_qm[:, None] * stride_om +
         
     | 
| 300 | 
         
            +
                                offs_ve[None, :] * stride_oe)
         
     | 
| 301 | 
         
            +
                dq_ptrs = DQ + (offs_qm[:, None] * stride_qm +
         
     | 
| 302 | 
         
            +
                                offs_qkk[None, :] * stride_qk)
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                do = tl.load(do_ptrs, mask=offs_qm[:, None] < N_CTX, other=0.0)
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                dq = tl.zeros([BLOCK_M, BLOCK_DMODEL_QK], dtype=tl.float32)
         
     | 
| 307 | 
         
            +
                lo = 0
         
     | 
| 308 | 
         
            +
                hi = (start_m + 1) * BLOCK_M if CAUSAL else N_CTX
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                offs_m_curr = start_m * BLOCK_M + offs_m
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                for start_n in range(0, num_block):
         
     | 
| 313 | 
         
            +
                    offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
         
     | 
| 314 | 
         
            +
                    k_ptrs = K + (offs_kvn[:, None] * stride_kn +
         
     | 
| 315 | 
         
            +
                                  offs_qkk[None, :] * stride_kk)
         
     | 
| 316 | 
         
            +
                    v_ptrs = V + (offs_kvn[:, None] * stride_vn +
         
     | 
| 317 | 
         
            +
                                  offs_ve[None, :] * stride_ve)
         
     | 
| 318 | 
         
            +
                    # k and v stay in SRAM throughout
         
     | 
| 319 | 
         
            +
                    k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
         
     | 
| 320 | 
         
            +
                    v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
         
     | 
| 321 | 
         
            +
                    # dp = do vT
         
     | 
| 322 | 
         
            +
                    dp = tl.dot(do, tl.trans(v).to(do.dtype))
         
     | 
| 323 | 
         
            +
                    if CAUSAL:
         
     | 
| 324 | 
         
            +
                        index = offs_m_curr[:, None] - offs_kvn[None, :]
         
     | 
| 325 | 
         
            +
                        if USE_DECAY:
         
     | 
| 326 | 
         
            +
                            S_block_ptr = S + off_h * stride_sh
         
     | 
| 327 | 
         
            +
                            s = tl.load(S_block_ptr)
         
     | 
| 328 | 
         
            +
                            s_index = s * index
         
     | 
| 329 | 
         
            +
                            s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
         
     | 
| 330 | 
         
            +
                            s = tl.exp(s_index)
         
     | 
| 331 | 
         
            +
                            dp = dp * s
         
     | 
| 332 | 
         
            +
                        else:
         
     | 
| 333 | 
         
            +
                            dp = tl.where(index >= 0, dp, 0)
         
     | 
| 334 | 
         
            +
                    # dq = dq + dp k
         
     | 
| 335 | 
         
            +
                    dq += tl.dot(dp.to(k.dtype), k)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                tl.store(dq_ptrs, dq, mask=offs_qm[:, None] < N_CTX)
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
            class _attention(torch.autograd.Function):
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                @staticmethod
         
     | 
| 343 | 
         
            +
                def forward(ctx, q, k, v, causal, s):
         
     | 
| 344 | 
         
            +
                    q = q.contiguous()
         
     | 
| 345 | 
         
            +
                    k = k.contiguous()
         
     | 
| 346 | 
         
            +
                    v = v.contiguous()
         
     | 
| 347 | 
         
            +
                    s = s.contiguous()
         
     | 
| 348 | 
         
            +
                    # only support for Ampere now
         
     | 
| 349 | 
         
            +
                    capability = torch.cuda.get_device_capability()
         
     | 
| 350 | 
         
            +
                    if capability[0] < 8:
         
     | 
| 351 | 
         
            +
                        raise RuntimeError(
         
     | 
| 352 | 
         
            +
                            "Lightning attention currently only supported for compute capability >= 80"
         
     | 
| 353 | 
         
            +
                        )
         
     | 
| 354 | 
         
            +
                    # shape constraints
         
     | 
| 355 | 
         
            +
                    Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
         
     | 
| 356 | 
         
            +
                    # right
         
     | 
| 357 | 
         
            +
                    o = torch.empty(
         
     | 
| 358 | 
         
            +
                        (q.shape[0], q.shape[1], q.shape[2], v.shape[-1]),
         
     | 
| 359 | 
         
            +
                        dtype=q.dtype,
         
     | 
| 360 | 
         
            +
                        device=q.device,
         
     | 
| 361 | 
         
            +
                    )
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                    BLOCK_M = 128
         
     | 
| 364 | 
         
            +
                    BLOCK_N = 64
         
     | 
| 365 | 
         
            +
                    num_warps = 4 if Lk <= 64 else 8
         
     | 
| 366 | 
         
            +
                    num_stages = 1
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                    grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
         
     | 
| 369 | 
         
            +
                    use_decay = s.shape[0] > 0
         
     | 
| 370 | 
         
            +
                    _fwd_kernel[grid](
         
     | 
| 371 | 
         
            +
                        q,
         
     | 
| 372 | 
         
            +
                        k,
         
     | 
| 373 | 
         
            +
                        v,
         
     | 
| 374 | 
         
            +
                        o,
         
     | 
| 375 | 
         
            +
                        s,
         
     | 
| 376 | 
         
            +
                        q.stride(0),
         
     | 
| 377 | 
         
            +
                        q.stride(1),
         
     | 
| 378 | 
         
            +
                        q.stride(2),
         
     | 
| 379 | 
         
            +
                        q.stride(3),
         
     | 
| 380 | 
         
            +
                        k.stride(0),
         
     | 
| 381 | 
         
            +
                        k.stride(1),
         
     | 
| 382 | 
         
            +
                        k.stride(2),
         
     | 
| 383 | 
         
            +
                        k.stride(3),
         
     | 
| 384 | 
         
            +
                        v.stride(0),
         
     | 
| 385 | 
         
            +
                        v.stride(1),
         
     | 
| 386 | 
         
            +
                        v.stride(2),
         
     | 
| 387 | 
         
            +
                        v.stride(3),
         
     | 
| 388 | 
         
            +
                        o.stride(0),
         
     | 
| 389 | 
         
            +
                        o.stride(1),
         
     | 
| 390 | 
         
            +
                        o.stride(2),
         
     | 
| 391 | 
         
            +
                        o.stride(3),
         
     | 
| 392 | 
         
            +
                        s.stride(0),
         
     | 
| 393 | 
         
            +
                        q.shape[0],
         
     | 
| 394 | 
         
            +
                        q.shape[1],
         
     | 
| 395 | 
         
            +
                        q.shape[2],
         
     | 
| 396 | 
         
            +
                        BLOCK_M=BLOCK_M,
         
     | 
| 397 | 
         
            +
                        BLOCK_DMODEL_QK=Lk,
         
     | 
| 398 | 
         
            +
                        BLOCK_N=BLOCK_N,
         
     | 
| 399 | 
         
            +
                        BLOCK_DMODEL_V=Lv,
         
     | 
| 400 | 
         
            +
                        IS_CAUSAL=causal,
         
     | 
| 401 | 
         
            +
                        USE_DECAY=use_decay,
         
     | 
| 402 | 
         
            +
                        num_warps=num_warps,
         
     | 
| 403 | 
         
            +
                        num_stages=num_stages,
         
     | 
| 404 | 
         
            +
                    )
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
                    ctx.save_for_backward(q, k, v, s)
         
     | 
| 407 | 
         
            +
                    ctx.grid = grid
         
     | 
| 408 | 
         
            +
                    ctx.BLOCK_M = BLOCK_M
         
     | 
| 409 | 
         
            +
                    ctx.BLOCK_DMODEL_QK = Lk
         
     | 
| 410 | 
         
            +
                    ctx.BLOCK_N = BLOCK_N
         
     | 
| 411 | 
         
            +
                    ctx.BLOCK_DMODEL_V = Lv
         
     | 
| 412 | 
         
            +
                    ctx.causal = causal
         
     | 
| 413 | 
         
            +
                    ctx.use_decay = use_decay
         
     | 
| 414 | 
         
            +
                    return o
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                @staticmethod
         
     | 
| 417 | 
         
            +
                def backward(ctx, do):
         
     | 
| 418 | 
         
            +
                    q, k, v, s = ctx.saved_tensors
         
     | 
| 419 | 
         
            +
                    BLOCK_M = 32
         
     | 
| 420 | 
         
            +
                    BLOCK_N = 32
         
     | 
| 421 | 
         
            +
                    num_warps = 4
         
     | 
| 422 | 
         
            +
                    num_stages = 1
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                    do = do.contiguous()
         
     | 
| 425 | 
         
            +
                    dq = torch.zeros_like(q, dtype=torch.float32)
         
     | 
| 426 | 
         
            +
                    dk = torch.empty_like(k)
         
     | 
| 427 | 
         
            +
                    dv = torch.empty_like(v)
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    grid_kv = (triton.cdiv(k.shape[2],
         
     | 
| 430 | 
         
            +
                                           BLOCK_N), k.shape[0] * k.shape[1], 1)
         
     | 
| 431 | 
         
            +
                    _bwd_kernel_kv[grid_kv](
         
     | 
| 432 | 
         
            +
                        q,
         
     | 
| 433 | 
         
            +
                        k,
         
     | 
| 434 | 
         
            +
                        v,
         
     | 
| 435 | 
         
            +
                        s,
         
     | 
| 436 | 
         
            +
                        do,
         
     | 
| 437 | 
         
            +
                        dq,
         
     | 
| 438 | 
         
            +
                        dk,
         
     | 
| 439 | 
         
            +
                        dv,
         
     | 
| 440 | 
         
            +
                        q.stride(0),
         
     | 
| 441 | 
         
            +
                        q.stride(1),
         
     | 
| 442 | 
         
            +
                        q.stride(2),
         
     | 
| 443 | 
         
            +
                        q.stride(3),
         
     | 
| 444 | 
         
            +
                        k.stride(0),
         
     | 
| 445 | 
         
            +
                        k.stride(1),
         
     | 
| 446 | 
         
            +
                        k.stride(2),
         
     | 
| 447 | 
         
            +
                        k.stride(3),
         
     | 
| 448 | 
         
            +
                        v.stride(0),
         
     | 
| 449 | 
         
            +
                        v.stride(1),
         
     | 
| 450 | 
         
            +
                        v.stride(2),
         
     | 
| 451 | 
         
            +
                        v.stride(3),
         
     | 
| 452 | 
         
            +
                        do.stride(0),
         
     | 
| 453 | 
         
            +
                        do.stride(1),
         
     | 
| 454 | 
         
            +
                        do.stride(2),
         
     | 
| 455 | 
         
            +
                        do.stride(3),
         
     | 
| 456 | 
         
            +
                        s.stride(0),
         
     | 
| 457 | 
         
            +
                        q.shape[0],
         
     | 
| 458 | 
         
            +
                        q.shape[1],
         
     | 
| 459 | 
         
            +
                        q.shape[2],
         
     | 
| 460 | 
         
            +
                        grid_kv[0],
         
     | 
| 461 | 
         
            +
                        BLOCK_M=BLOCK_M,
         
     | 
| 462 | 
         
            +
                        BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
         
     | 
| 463 | 
         
            +
                        BLOCK_N=BLOCK_N,
         
     | 
| 464 | 
         
            +
                        BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
         
     | 
| 465 | 
         
            +
                        CAUSAL=ctx.causal,
         
     | 
| 466 | 
         
            +
                        USE_DECAY=ctx.use_decay,
         
     | 
| 467 | 
         
            +
                        num_warps=num_warps,
         
     | 
| 468 | 
         
            +
                        num_stages=num_stages,
         
     | 
| 469 | 
         
            +
                    )
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
                    grid_q = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                    _bwd_kernel_q[grid_q](
         
     | 
| 474 | 
         
            +
                        q,
         
     | 
| 475 | 
         
            +
                        k,
         
     | 
| 476 | 
         
            +
                        v,
         
     | 
| 477 | 
         
            +
                        s,
         
     | 
| 478 | 
         
            +
                        do,
         
     | 
| 479 | 
         
            +
                        dq,
         
     | 
| 480 | 
         
            +
                        dk,
         
     | 
| 481 | 
         
            +
                        dv,
         
     | 
| 482 | 
         
            +
                        q.stride(0),
         
     | 
| 483 | 
         
            +
                        q.stride(1),
         
     | 
| 484 | 
         
            +
                        q.stride(2),
         
     | 
| 485 | 
         
            +
                        q.stride(3),
         
     | 
| 486 | 
         
            +
                        k.stride(0),
         
     | 
| 487 | 
         
            +
                        k.stride(1),
         
     | 
| 488 | 
         
            +
                        k.stride(2),
         
     | 
| 489 | 
         
            +
                        k.stride(3),
         
     | 
| 490 | 
         
            +
                        v.stride(0),
         
     | 
| 491 | 
         
            +
                        v.stride(1),
         
     | 
| 492 | 
         
            +
                        v.stride(2),
         
     | 
| 493 | 
         
            +
                        v.stride(3),
         
     | 
| 494 | 
         
            +
                        do.stride(0),
         
     | 
| 495 | 
         
            +
                        do.stride(1),
         
     | 
| 496 | 
         
            +
                        do.stride(2),
         
     | 
| 497 | 
         
            +
                        do.stride(3),
         
     | 
| 498 | 
         
            +
                        s.stride(0),
         
     | 
| 499 | 
         
            +
                        q.shape[0],
         
     | 
| 500 | 
         
            +
                        q.shape[1],
         
     | 
| 501 | 
         
            +
                        q.shape[2],
         
     | 
| 502 | 
         
            +
                        grid_q[0],
         
     | 
| 503 | 
         
            +
                        BLOCK_M=BLOCK_M,
         
     | 
| 504 | 
         
            +
                        BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
         
     | 
| 505 | 
         
            +
                        BLOCK_N=BLOCK_N,
         
     | 
| 506 | 
         
            +
                        BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
         
     | 
| 507 | 
         
            +
                        CAUSAL=ctx.causal,
         
     | 
| 508 | 
         
            +
                        USE_DECAY=ctx.use_decay,
         
     | 
| 509 | 
         
            +
                        num_warps=num_warps,
         
     | 
| 510 | 
         
            +
                        num_stages=num_stages,
         
     | 
| 511 | 
         
            +
                    )
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                    return dq.to(q.dtype), dk, dv, None, None
         
     | 
| 514 | 
         
            +
             
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
            attention = _attention.apply
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
            def lightning_attention(q, k, v, causal, ed):
         
     | 
| 520 | 
         
            +
                d = q.shape[-1]
         
     | 
| 521 | 
         
            +
                e = v.shape[-1]
         
     | 
| 522 | 
         
            +
                # arr = f(d)
         
     | 
| 523 | 
         
            +
                if d >= 128:
         
     | 
| 524 | 
         
            +
                    m = 128
         
     | 
| 525 | 
         
            +
                else:
         
     | 
| 526 | 
         
            +
                    m = 64
         
     | 
| 527 | 
         
            +
                arr = [m * i for i in range(d // m + 1)]
         
     | 
| 528 | 
         
            +
                if arr[-1] != d:
         
     | 
| 529 | 
         
            +
                    arr.append(d)
         
     | 
| 530 | 
         
            +
                n = len(arr)
         
     | 
| 531 | 
         
            +
                output = 0
         
     | 
| 532 | 
         
            +
                for i in range(n - 1):
         
     | 
| 533 | 
         
            +
                    s = arr[i]
         
     | 
| 534 | 
         
            +
                    e = arr[i + 1]
         
     | 
| 535 | 
         
            +
                    q1 = q[..., s:e]
         
     | 
| 536 | 
         
            +
                    k1 = k[..., s:e]
         
     | 
| 537 | 
         
            +
                    o = attention(q1, k1, v, causal, ed)
         
     | 
| 538 | 
         
            +
                    output = output + o
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                return output
         
     | 
    	
        lightning_attention2.py
    ADDED
    
    | 
         @@ -0,0 +1,540 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #    Copyright 2024 OpenNLPLab
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            #    you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            #    You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #    Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            #    See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            #    limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            # coding=utf-8
         
     | 
| 16 | 
         
            +
            import torch
         
     | 
| 17 | 
         
            +
            import triton
         
     | 
| 18 | 
         
            +
            import triton.language as tl
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            @triton.jit
         
     | 
| 22 | 
         
            +
            def _fwd_kernel(
         
     | 
| 23 | 
         
            +
                Q,
         
     | 
| 24 | 
         
            +
                K,
         
     | 
| 25 | 
         
            +
                V,
         
     | 
| 26 | 
         
            +
                Out,
         
     | 
| 27 | 
         
            +
                S,
         
     | 
| 28 | 
         
            +
                stride_qz,
         
     | 
| 29 | 
         
            +
                stride_qh,
         
     | 
| 30 | 
         
            +
                stride_qm,
         
     | 
| 31 | 
         
            +
                stride_qk,
         
     | 
| 32 | 
         
            +
                stride_kz,
         
     | 
| 33 | 
         
            +
                stride_kh,
         
     | 
| 34 | 
         
            +
                stride_kn,
         
     | 
| 35 | 
         
            +
                stride_kk,
         
     | 
| 36 | 
         
            +
                stride_vz,
         
     | 
| 37 | 
         
            +
                stride_vh,
         
     | 
| 38 | 
         
            +
                stride_vn,
         
     | 
| 39 | 
         
            +
                stride_ve,
         
     | 
| 40 | 
         
            +
                stride_oz,
         
     | 
| 41 | 
         
            +
                stride_oh,
         
     | 
| 42 | 
         
            +
                stride_om,
         
     | 
| 43 | 
         
            +
                stride_oe,
         
     | 
| 44 | 
         
            +
                stride_sh,
         
     | 
| 45 | 
         
            +
                Z,
         
     | 
| 46 | 
         
            +
                H,
         
     | 
| 47 | 
         
            +
                N_CTX,
         
     | 
| 48 | 
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 49 | 
         
            +
                BLOCK_DMODEL_QK: tl.constexpr,
         
     | 
| 50 | 
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 51 | 
         
            +
                BLOCK_DMODEL_V: tl.constexpr,
         
     | 
| 52 | 
         
            +
                IS_CAUSAL: tl.constexpr,
         
     | 
| 53 | 
         
            +
                USE_DECAY: tl.constexpr,
         
     | 
| 54 | 
         
            +
            ):
         
     | 
| 55 | 
         
            +
                start_m = tl.program_id(0)
         
     | 
| 56 | 
         
            +
                off_hz = tl.program_id(1)
         
     | 
| 57 | 
         
            +
                off_h = off_hz % H
         
     | 
| 58 | 
         
            +
                # initialize offsets
         
     | 
| 59 | 
         
            +
                offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
         
     | 
| 60 | 
         
            +
                offs_n = tl.arange(0, BLOCK_N)
         
     | 
| 61 | 
         
            +
                offs_k = tl.arange(0, BLOCK_DMODEL_QK)
         
     | 
| 62 | 
         
            +
                offs_e = tl.arange(0, BLOCK_DMODEL_V)
         
     | 
| 63 | 
         
            +
                # get current offset of q k v
         
     | 
| 64 | 
         
            +
                off_q = (off_hz * stride_qh + offs_m[:, None] * stride_qm +
         
     | 
| 65 | 
         
            +
                         offs_k[None, :] * stride_qk)
         
     | 
| 66 | 
         
            +
                off_k = (off_hz * stride_kh + offs_n[:, None] * stride_kn +
         
     | 
| 67 | 
         
            +
                         offs_k[None, :] * stride_kk)
         
     | 
| 68 | 
         
            +
                off_v = (off_hz * stride_vh + offs_n[:, None] * stride_vn +
         
     | 
| 69 | 
         
            +
                         offs_e[None, :] * stride_ve)
         
     | 
| 70 | 
         
            +
                off_o = (off_hz * stride_oh + offs_m[:, None] * stride_om +
         
     | 
| 71 | 
         
            +
                         offs_e[None, :] * stride_oe)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                # Initialize pointers to Q, K, V
         
     | 
| 74 | 
         
            +
                q_ptrs = Q + off_q
         
     | 
| 75 | 
         
            +
                k_ptrs = K + off_k
         
     | 
| 76 | 
         
            +
                v_ptrs = V + off_v
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                # initialize pointer to m and l
         
     | 
| 79 | 
         
            +
                acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_V], dtype=tl.float32)
         
     | 
| 80 | 
         
            +
                # load q: it will stay in SRAM throughout
         
     | 
| 81 | 
         
            +
                q = tl.load(q_ptrs, mask=offs_m[:, None] < N_CTX, other=0.0)
         
     | 
| 82 | 
         
            +
                # loop over k, v and update accumulator
         
     | 
| 83 | 
         
            +
                lo = 0
         
     | 
| 84 | 
         
            +
                # print(start_m)
         
     | 
| 85 | 
         
            +
                hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
         
     | 
| 86 | 
         
            +
                for start_n in range(lo, hi, BLOCK_N):
         
     | 
| 87 | 
         
            +
                    # -- load k, v --
         
     | 
| 88 | 
         
            +
                    k = tl.load(
         
     | 
| 89 | 
         
            +
                        k_ptrs + start_n * stride_kn,
         
     | 
| 90 | 
         
            +
                        mask=(start_n + offs_n)[:, None] < N_CTX,
         
     | 
| 91 | 
         
            +
                        other=0.0,
         
     | 
| 92 | 
         
            +
                    )
         
     | 
| 93 | 
         
            +
                    v = tl.load(
         
     | 
| 94 | 
         
            +
                        v_ptrs + start_n * stride_vn,
         
     | 
| 95 | 
         
            +
                        mask=(start_n + offs_n)[:, None] < N_CTX,
         
     | 
| 96 | 
         
            +
                        other=0.0,
         
     | 
| 97 | 
         
            +
                    )
         
     | 
| 98 | 
         
            +
                    # -- compute qk ---
         
     | 
| 99 | 
         
            +
                    # qk = tl.dot(q, k)
         
     | 
| 100 | 
         
            +
                    qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
         
     | 
| 101 | 
         
            +
                    # qk += tl.dot(q, k, trans_b=True)
         
     | 
| 102 | 
         
            +
                    qk += tl.dot(q, tl.trans(k))
         
     | 
| 103 | 
         
            +
                    if IS_CAUSAL:
         
     | 
| 104 | 
         
            +
                        index = offs_m[:, None] - (start_n + offs_n[None, :])
         
     | 
| 105 | 
         
            +
                        if USE_DECAY:
         
     | 
| 106 | 
         
            +
                            S_block_ptr = S + off_h * stride_sh
         
     | 
| 107 | 
         
            +
                            s = tl.load(S_block_ptr)
         
     | 
| 108 | 
         
            +
                            s_index = s * index
         
     | 
| 109 | 
         
            +
                            s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
         
     | 
| 110 | 
         
            +
                            qk = tl.exp(s_index) * qk
         
     | 
| 111 | 
         
            +
                        else:
         
     | 
| 112 | 
         
            +
                            qk = tl.where(index >= 0, qk, 0)
         
     | 
| 113 | 
         
            +
                    acc += tl.dot(qk, v.to(qk.dtype))
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                out_ptrs = Out + off_o
         
     | 
| 116 | 
         
            +
                tl.store(out_ptrs, acc.to(q.dtype), mask=offs_m[:, None] < N_CTX)
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            @triton.jit
         
     | 
| 120 | 
         
            +
            def _bwd_kernel_kv(
         
     | 
| 121 | 
         
            +
                Q,
         
     | 
| 122 | 
         
            +
                K,
         
     | 
| 123 | 
         
            +
                V,
         
     | 
| 124 | 
         
            +
                S,
         
     | 
| 125 | 
         
            +
                DO,
         
     | 
| 126 | 
         
            +
                DQ,
         
     | 
| 127 | 
         
            +
                DK,
         
     | 
| 128 | 
         
            +
                DV,
         
     | 
| 129 | 
         
            +
                stride_qz,
         
     | 
| 130 | 
         
            +
                stride_qh,
         
     | 
| 131 | 
         
            +
                stride_qm,
         
     | 
| 132 | 
         
            +
                stride_qk,
         
     | 
| 133 | 
         
            +
                stride_kz,
         
     | 
| 134 | 
         
            +
                stride_kh,
         
     | 
| 135 | 
         
            +
                stride_kn,
         
     | 
| 136 | 
         
            +
                stride_kk,
         
     | 
| 137 | 
         
            +
                stride_vz,
         
     | 
| 138 | 
         
            +
                stride_vh,
         
     | 
| 139 | 
         
            +
                stride_vn,
         
     | 
| 140 | 
         
            +
                stride_ve,
         
     | 
| 141 | 
         
            +
                stride_oz,
         
     | 
| 142 | 
         
            +
                stride_oh,
         
     | 
| 143 | 
         
            +
                stride_om,
         
     | 
| 144 | 
         
            +
                stride_oe,
         
     | 
| 145 | 
         
            +
                stride_sh,
         
     | 
| 146 | 
         
            +
                Z,
         
     | 
| 147 | 
         
            +
                H,
         
     | 
| 148 | 
         
            +
                N_CTX,
         
     | 
| 149 | 
         
            +
                num_block,
         
     | 
| 150 | 
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 151 | 
         
            +
                BLOCK_DMODEL_QK: tl.constexpr,
         
     | 
| 152 | 
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 153 | 
         
            +
                BLOCK_DMODEL_V: tl.constexpr,
         
     | 
| 154 | 
         
            +
                CAUSAL: tl.constexpr,
         
     | 
| 155 | 
         
            +
                USE_DECAY: tl.constexpr,
         
     | 
| 156 | 
         
            +
            ):
         
     | 
| 157 | 
         
            +
                start_n = tl.program_id(0)
         
     | 
| 158 | 
         
            +
                off_hz = tl.program_id(1)
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                off_z = off_hz // H
         
     | 
| 161 | 
         
            +
                off_h = off_hz % H
         
     | 
| 162 | 
         
            +
                # offset pointers for batch/head
         
     | 
| 163 | 
         
            +
                Q += off_z * stride_qz + off_h * stride_qh
         
     | 
| 164 | 
         
            +
                K += off_z * stride_kz + off_h * stride_kh
         
     | 
| 165 | 
         
            +
                V += off_z * stride_vz + off_h * stride_vh
         
     | 
| 166 | 
         
            +
                DO += off_z * stride_oz + off_h * stride_oh
         
     | 
| 167 | 
         
            +
                DQ += off_z * stride_qz + off_h * stride_qh
         
     | 
| 168 | 
         
            +
                DK += off_z * stride_kz + off_h * stride_kh
         
     | 
| 169 | 
         
            +
                DV += off_z * stride_vz + off_h * stride_vh
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                # start of q
         
     | 
| 172 | 
         
            +
                if CAUSAL:
         
     | 
| 173 | 
         
            +
                    lo = start_n * BLOCK_M
         
     | 
| 174 | 
         
            +
                else:
         
     | 
| 175 | 
         
            +
                    lo = 0
         
     | 
| 176 | 
         
            +
                # initialize row/col offsets
         
     | 
| 177 | 
         
            +
                # seqlence offset
         
     | 
| 178 | 
         
            +
                offs_qm = lo + tl.arange(0, BLOCK_M)
         
     | 
| 179 | 
         
            +
                offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
         
     | 
| 180 | 
         
            +
                # feature offset
         
     | 
| 181 | 
         
            +
                offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
         
     | 
| 182 | 
         
            +
                offs_ve = tl.arange(0, BLOCK_DMODEL_V)
         
     | 
| 183 | 
         
            +
                # row block index
         
     | 
| 184 | 
         
            +
                offs_m = tl.arange(0, BLOCK_M)
         
     | 
| 185 | 
         
            +
                # initialize pointers to value-like data
         
     | 
| 186 | 
         
            +
                q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_qkk[None, :] * stride_qk)
         
     | 
| 187 | 
         
            +
                k_ptrs = K + (offs_kvn[:, None] * stride_kn +
         
     | 
| 188 | 
         
            +
                              offs_qkk[None, :] * stride_kk)
         
     | 
| 189 | 
         
            +
                v_ptrs = V + (offs_kvn[:, None] * stride_vn + offs_ve[None, :] * stride_ve)
         
     | 
| 190 | 
         
            +
                do_ptrs = DO + (offs_qm[:, None] * stride_om +
         
     | 
| 191 | 
         
            +
                                offs_ve[None, :] * stride_oe)
         
     | 
| 192 | 
         
            +
                dq_ptrs = DQ + (offs_qm[:, None] * stride_qm +
         
     | 
| 193 | 
         
            +
                                offs_qkk[None, :] * stride_qk)
         
     | 
| 194 | 
         
            +
                # initialize dv amd dk
         
     | 
| 195 | 
         
            +
                dv = tl.zeros([BLOCK_N, BLOCK_DMODEL_V], dtype=tl.float32)
         
     | 
| 196 | 
         
            +
                dk = tl.zeros([BLOCK_N, BLOCK_DMODEL_QK], dtype=tl.float32)
         
     | 
| 197 | 
         
            +
                # k and v stay in SRAM throughout
         
     | 
| 198 | 
         
            +
                k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
         
     | 
| 199 | 
         
            +
                v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
         
     | 
| 200 | 
         
            +
                # loop over rows
         
     | 
| 201 | 
         
            +
                for start_m in range(lo, num_block * BLOCK_M, BLOCK_M):
         
     | 
| 202 | 
         
            +
                    offs_m_curr = start_m + offs_m
         
     | 
| 203 | 
         
            +
                    # load q, k, v, do on-chip
         
     | 
| 204 | 
         
            +
                    q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
         
     | 
| 205 | 
         
            +
                    qk = tl.dot(q, tl.trans(k))
         
     | 
| 206 | 
         
            +
                    # qk = tl.dot(q, k, trans_b=True)
         
     | 
| 207 | 
         
            +
                    if CAUSAL:
         
     | 
| 208 | 
         
            +
                        index = offs_m_curr[:, None] - offs_kvn[None, :]
         
     | 
| 209 | 
         
            +
                        if USE_DECAY:
         
     | 
| 210 | 
         
            +
                            S_block_ptr = S + off_h * stride_sh
         
     | 
| 211 | 
         
            +
                            s = tl.load(S_block_ptr)
         
     | 
| 212 | 
         
            +
                            s_index = s * index
         
     | 
| 213 | 
         
            +
                            s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
         
     | 
| 214 | 
         
            +
                            s = tl.exp(s_index)
         
     | 
| 215 | 
         
            +
                            qk = qk * s
         
     | 
| 216 | 
         
            +
                        else:
         
     | 
| 217 | 
         
            +
                            qk = tl.where(index >= 0, qk, 0)
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                    p = qk
         
     | 
| 220 | 
         
            +
                    # compute dv
         
     | 
| 221 | 
         
            +
                    do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < N_CTX, other=0.0)
         
     | 
| 222 | 
         
            +
                    dv += tl.dot(tl.trans(p.to(do.dtype)), do)
         
     | 
| 223 | 
         
            +
                    dp = tl.dot(do, tl.trans(v).to(do.dtype))
         
     | 
| 224 | 
         
            +
                    if CAUSAL:
         
     | 
| 225 | 
         
            +
                        if USE_DECAY:
         
     | 
| 226 | 
         
            +
                            dp = dp * s
         
     | 
| 227 | 
         
            +
                        else:
         
     | 
| 228 | 
         
            +
                            dp = tl.where(index >= 0, dp, 0)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    dk += tl.dot(tl.trans(dp.to(q.dtype)), q).to(tl.float32)
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    # increment pointers
         
     | 
| 233 | 
         
            +
                    q_ptrs += BLOCK_M * stride_qm
         
     | 
| 234 | 
         
            +
                    do_ptrs += BLOCK_M * stride_om
         
     | 
| 235 | 
         
            +
                # write-back
         
     | 
| 236 | 
         
            +
                dv_ptrs = DV + (offs_kvn[:, None] * stride_vn +
         
     | 
| 237 | 
         
            +
                                offs_ve[None, :] * stride_ve)
         
     | 
| 238 | 
         
            +
                dk_ptrs = DK + (offs_kvn[:, None] * stride_kn +
         
     | 
| 239 | 
         
            +
                                offs_qkk[None, :] * stride_kk)
         
     | 
| 240 | 
         
            +
                tl.store(dv_ptrs, dv, mask=offs_kvn[:, None] < N_CTX)
         
     | 
| 241 | 
         
            +
                tl.store(dk_ptrs, dk, mask=offs_kvn[:, None] < N_CTX)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
            @triton.jit
         
     | 
| 245 | 
         
            +
            def _bwd_kernel_q(
         
     | 
| 246 | 
         
            +
                Q,
         
     | 
| 247 | 
         
            +
                K,
         
     | 
| 248 | 
         
            +
                V,
         
     | 
| 249 | 
         
            +
                S,
         
     | 
| 250 | 
         
            +
                DO,
         
     | 
| 251 | 
         
            +
                DQ,
         
     | 
| 252 | 
         
            +
                DK,
         
     | 
| 253 | 
         
            +
                DV,
         
     | 
| 254 | 
         
            +
                stride_qz,
         
     | 
| 255 | 
         
            +
                stride_qh,
         
     | 
| 256 | 
         
            +
                stride_qm,
         
     | 
| 257 | 
         
            +
                stride_qk,
         
     | 
| 258 | 
         
            +
                stride_kz,
         
     | 
| 259 | 
         
            +
                stride_kh,
         
     | 
| 260 | 
         
            +
                stride_kn,
         
     | 
| 261 | 
         
            +
                stride_kk,
         
     | 
| 262 | 
         
            +
                stride_vz,
         
     | 
| 263 | 
         
            +
                stride_vh,
         
     | 
| 264 | 
         
            +
                stride_vn,
         
     | 
| 265 | 
         
            +
                stride_ve,
         
     | 
| 266 | 
         
            +
                stride_oz,
         
     | 
| 267 | 
         
            +
                stride_oh,
         
     | 
| 268 | 
         
            +
                stride_om,
         
     | 
| 269 | 
         
            +
                stride_oe,
         
     | 
| 270 | 
         
            +
                stride_sh,
         
     | 
| 271 | 
         
            +
                Z,
         
     | 
| 272 | 
         
            +
                H,
         
     | 
| 273 | 
         
            +
                N_CTX,
         
     | 
| 274 | 
         
            +
                num_block,
         
     | 
| 275 | 
         
            +
                BLOCK_M: tl.constexpr,
         
     | 
| 276 | 
         
            +
                BLOCK_DMODEL_QK: tl.constexpr,
         
     | 
| 277 | 
         
            +
                BLOCK_N: tl.constexpr,
         
     | 
| 278 | 
         
            +
                BLOCK_DMODEL_V: tl.constexpr,
         
     | 
| 279 | 
         
            +
                CAUSAL: tl.constexpr,
         
     | 
| 280 | 
         
            +
                USE_DECAY: tl.constexpr,
         
     | 
| 281 | 
         
            +
            ):
         
     | 
| 282 | 
         
            +
                start_m = tl.program_id(0)
         
     | 
| 283 | 
         
            +
                off_hz = tl.program_id(1)
         
     | 
| 284 | 
         
            +
                off_z = off_hz // H
         
     | 
| 285 | 
         
            +
                off_h = off_hz % H
         
     | 
| 286 | 
         
            +
                # offset pointers for batch/head
         
     | 
| 287 | 
         
            +
                K += off_z * stride_kz + off_h * stride_kh
         
     | 
| 288 | 
         
            +
                V += off_z * stride_vz + off_h * stride_vh
         
     | 
| 289 | 
         
            +
                DO += off_z * stride_oz + off_h * stride_oh
         
     | 
| 290 | 
         
            +
                DQ += off_z * stride_qz + off_h * stride_qh
         
     | 
| 291 | 
         
            +
                # feature offset
         
     | 
| 292 | 
         
            +
                offs_qkk = tl.arange(0, BLOCK_DMODEL_QK)
         
     | 
| 293 | 
         
            +
                offs_ve = tl.arange(0, BLOCK_DMODEL_V)
         
     | 
| 294 | 
         
            +
                # row block index
         
     | 
| 295 | 
         
            +
                offs_m = tl.arange(0, BLOCK_M)
         
     | 
| 296 | 
         
            +
                # row block index
         
     | 
| 297 | 
         
            +
                offs_qm = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
         
     | 
| 298 | 
         
            +
                # do
         
     | 
| 299 | 
         
            +
                do_ptrs = DO + (offs_qm[:, None] * stride_om +
         
     | 
| 300 | 
         
            +
                                offs_ve[None, :] * stride_oe)
         
     | 
| 301 | 
         
            +
                dq_ptrs = DQ + (offs_qm[:, None] * stride_qm +
         
     | 
| 302 | 
         
            +
                                offs_qkk[None, :] * stride_qk)
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                do = tl.load(do_ptrs, mask=offs_qm[:, None] < N_CTX, other=0.0)
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                dq = tl.zeros([BLOCK_M, BLOCK_DMODEL_QK], dtype=tl.float32)
         
     | 
| 307 | 
         
            +
                lo = 0
         
     | 
| 308 | 
         
            +
                hi = (start_m + 1) * BLOCK_M if CAUSAL else N_CTX
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                offs_m_curr = start_m * BLOCK_M + offs_m
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                for start_n in range(0, num_block):
         
     | 
| 313 | 
         
            +
                    offs_kvn = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
         
     | 
| 314 | 
         
            +
                    k_ptrs = K + (offs_kvn[:, None] * stride_kn +
         
     | 
| 315 | 
         
            +
                                  offs_qkk[None, :] * stride_kk)
         
     | 
| 316 | 
         
            +
                    v_ptrs = V + (offs_kvn[:, None] * stride_vn +
         
     | 
| 317 | 
         
            +
                                  offs_ve[None, :] * stride_ve)
         
     | 
| 318 | 
         
            +
                    # k and v stay in SRAM throughout
         
     | 
| 319 | 
         
            +
                    k = tl.load(k_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
         
     | 
| 320 | 
         
            +
                    v = tl.load(v_ptrs, mask=offs_kvn[:, None] < N_CTX, other=0.0)
         
     | 
| 321 | 
         
            +
                    # dp = do vT
         
     | 
| 322 | 
         
            +
                    dp = tl.dot(do, tl.trans(v).to(do.dtype))
         
     | 
| 323 | 
         
            +
                    if CAUSAL:
         
     | 
| 324 | 
         
            +
                        index = offs_m_curr[:, None] - offs_kvn[None, :]
         
     | 
| 325 | 
         
            +
                        if USE_DECAY:
         
     | 
| 326 | 
         
            +
                            S_block_ptr = S + off_h * stride_sh
         
     | 
| 327 | 
         
            +
                            s = tl.load(S_block_ptr)
         
     | 
| 328 | 
         
            +
                            s_index = s * index
         
     | 
| 329 | 
         
            +
                            s_index = tl.where(s_index >= 0, -s_index, float("-inf"))
         
     | 
| 330 | 
         
            +
                            s = tl.exp(s_index)
         
     | 
| 331 | 
         
            +
                            dp = dp * s
         
     | 
| 332 | 
         
            +
                        else:
         
     | 
| 333 | 
         
            +
                            dp = tl.where(index >= 0, dp, 0)
         
     | 
| 334 | 
         
            +
                    # dq = dq + dp k
         
     | 
| 335 | 
         
            +
                    dq += tl.dot(dp.to(k.dtype), k)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                tl.store(dq_ptrs, dq, mask=offs_qm[:, None] < N_CTX)
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
            class _attention(torch.autograd.Function):
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                @staticmethod
         
     | 
| 343 | 
         
            +
                def forward(ctx, q, k, v, causal, s):
         
     | 
| 344 | 
         
            +
                    q = q.contiguous()
         
     | 
| 345 | 
         
            +
                    k = k.contiguous()
         
     | 
| 346 | 
         
            +
                    v = v.contiguous()
         
     | 
| 347 | 
         
            +
                    s = s.contiguous()
         
     | 
| 348 | 
         
            +
                    # only support for Ampere now
         
     | 
| 349 | 
         
            +
                    capability = torch.cuda.get_device_capability()
         
     | 
| 350 | 
         
            +
                    if capability[0] < 8:
         
     | 
| 351 | 
         
            +
                        raise RuntimeError(
         
     | 
| 352 | 
         
            +
                            "Lightning attention currently only supported for compute capability >= 80"
         
     | 
| 353 | 
         
            +
                        )
         
     | 
| 354 | 
         
            +
                    # shape constraints
         
     | 
| 355 | 
         
            +
                    Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
         
     | 
| 356 | 
         
            +
                    # right
         
     | 
| 357 | 
         
            +
                    o = torch.empty(
         
     | 
| 358 | 
         
            +
                        (q.shape[0], q.shape[1], q.shape[2], v.shape[-1]),
         
     | 
| 359 | 
         
            +
                        dtype=q.dtype,
         
     | 
| 360 | 
         
            +
                        device=q.device,
         
     | 
| 361 | 
         
            +
                    )
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                    BLOCK_M = 128
         
     | 
| 364 | 
         
            +
                    BLOCK_N = 64
         
     | 
| 365 | 
         
            +
                    num_warps = 4 if Lk <= 64 else 8
         
     | 
| 366 | 
         
            +
                    num_stages = 1
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                    grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
         
     | 
| 369 | 
         
            +
                    use_decay = s.shape[0] > 0
         
     | 
| 370 | 
         
            +
                    _fwd_kernel[grid](
         
     | 
| 371 | 
         
            +
                        q,
         
     | 
| 372 | 
         
            +
                        k,
         
     | 
| 373 | 
         
            +
                        v,
         
     | 
| 374 | 
         
            +
                        o,
         
     | 
| 375 | 
         
            +
                        s,
         
     | 
| 376 | 
         
            +
                        q.stride(0),
         
     | 
| 377 | 
         
            +
                        q.stride(1),
         
     | 
| 378 | 
         
            +
                        q.stride(2),
         
     | 
| 379 | 
         
            +
                        q.stride(3),
         
     | 
| 380 | 
         
            +
                        k.stride(0),
         
     | 
| 381 | 
         
            +
                        k.stride(1),
         
     | 
| 382 | 
         
            +
                        k.stride(2),
         
     | 
| 383 | 
         
            +
                        k.stride(3),
         
     | 
| 384 | 
         
            +
                        v.stride(0),
         
     | 
| 385 | 
         
            +
                        v.stride(1),
         
     | 
| 386 | 
         
            +
                        v.stride(2),
         
     | 
| 387 | 
         
            +
                        v.stride(3),
         
     | 
| 388 | 
         
            +
                        o.stride(0),
         
     | 
| 389 | 
         
            +
                        o.stride(1),
         
     | 
| 390 | 
         
            +
                        o.stride(2),
         
     | 
| 391 | 
         
            +
                        o.stride(3),
         
     | 
| 392 | 
         
            +
                        s.stride(0),
         
     | 
| 393 | 
         
            +
                        q.shape[0],
         
     | 
| 394 | 
         
            +
                        q.shape[1],
         
     | 
| 395 | 
         
            +
                        q.shape[2],
         
     | 
| 396 | 
         
            +
                        BLOCK_M=BLOCK_M,
         
     | 
| 397 | 
         
            +
                        BLOCK_DMODEL_QK=Lk,
         
     | 
| 398 | 
         
            +
                        BLOCK_N=BLOCK_N,
         
     | 
| 399 | 
         
            +
                        BLOCK_DMODEL_V=Lv,
         
     | 
| 400 | 
         
            +
                        IS_CAUSAL=causal,
         
     | 
| 401 | 
         
            +
                        USE_DECAY=use_decay,
         
     | 
| 402 | 
         
            +
                        num_warps=num_warps,
         
     | 
| 403 | 
         
            +
                        num_stages=num_stages,
         
     | 
| 404 | 
         
            +
                    )
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
                    ctx.save_for_backward(q, k, v, s)
         
     | 
| 407 | 
         
            +
                    ctx.grid = grid
         
     | 
| 408 | 
         
            +
                    ctx.BLOCK_M = BLOCK_M
         
     | 
| 409 | 
         
            +
                    ctx.BLOCK_DMODEL_QK = Lk
         
     | 
| 410 | 
         
            +
                    ctx.BLOCK_N = BLOCK_N
         
     | 
| 411 | 
         
            +
                    ctx.BLOCK_DMODEL_V = Lv
         
     | 
| 412 | 
         
            +
                    ctx.causal = causal
         
     | 
| 413 | 
         
            +
                    ctx.use_decay = use_decay
         
     | 
| 414 | 
         
            +
                    return o
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                @staticmethod
         
     | 
| 417 | 
         
            +
                def backward(ctx, do):
         
     | 
| 418 | 
         
            +
                    q, k, v, s = ctx.saved_tensors
         
     | 
| 419 | 
         
            +
                    BLOCK_M = 32
         
     | 
| 420 | 
         
            +
                    BLOCK_N = 32
         
     | 
| 421 | 
         
            +
                    num_warps = 4
         
     | 
| 422 | 
         
            +
                    num_stages = 1
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                    do = do.contiguous()
         
     | 
| 425 | 
         
            +
                    dq = torch.zeros_like(q, dtype=torch.float32)
         
     | 
| 426 | 
         
            +
                    dk = torch.empty_like(k)
         
     | 
| 427 | 
         
            +
                    dv = torch.empty_like(v)
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    grid_kv = (triton.cdiv(k.shape[2],
         
     | 
| 430 | 
         
            +
                                           BLOCK_N), k.shape[0] * k.shape[1], 1)
         
     | 
| 431 | 
         
            +
                    _bwd_kernel_kv[grid_kv](
         
     | 
| 432 | 
         
            +
                        q,
         
     | 
| 433 | 
         
            +
                        k,
         
     | 
| 434 | 
         
            +
                        v,
         
     | 
| 435 | 
         
            +
                        s,
         
     | 
| 436 | 
         
            +
                        do,
         
     | 
| 437 | 
         
            +
                        dq,
         
     | 
| 438 | 
         
            +
                        dk,
         
     | 
| 439 | 
         
            +
                        dv,
         
     | 
| 440 | 
         
            +
                        q.stride(0),
         
     | 
| 441 | 
         
            +
                        q.stride(1),
         
     | 
| 442 | 
         
            +
                        q.stride(2),
         
     | 
| 443 | 
         
            +
                        q.stride(3),
         
     | 
| 444 | 
         
            +
                        k.stride(0),
         
     | 
| 445 | 
         
            +
                        k.stride(1),
         
     | 
| 446 | 
         
            +
                        k.stride(2),
         
     | 
| 447 | 
         
            +
                        k.stride(3),
         
     | 
| 448 | 
         
            +
                        v.stride(0),
         
     | 
| 449 | 
         
            +
                        v.stride(1),
         
     | 
| 450 | 
         
            +
                        v.stride(2),
         
     | 
| 451 | 
         
            +
                        v.stride(3),
         
     | 
| 452 | 
         
            +
                        do.stride(0),
         
     | 
| 453 | 
         
            +
                        do.stride(1),
         
     | 
| 454 | 
         
            +
                        do.stride(2),
         
     | 
| 455 | 
         
            +
                        do.stride(3),
         
     | 
| 456 | 
         
            +
                        s.stride(0),
         
     | 
| 457 | 
         
            +
                        q.shape[0],
         
     | 
| 458 | 
         
            +
                        q.shape[1],
         
     | 
| 459 | 
         
            +
                        q.shape[2],
         
     | 
| 460 | 
         
            +
                        grid_kv[0],
         
     | 
| 461 | 
         
            +
                        BLOCK_M=BLOCK_M,
         
     | 
| 462 | 
         
            +
                        BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
         
     | 
| 463 | 
         
            +
                        BLOCK_N=BLOCK_N,
         
     | 
| 464 | 
         
            +
                        BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
         
     | 
| 465 | 
         
            +
                        CAUSAL=ctx.causal,
         
     | 
| 466 | 
         
            +
                        USE_DECAY=ctx.use_decay,
         
     | 
| 467 | 
         
            +
                        num_warps=num_warps,
         
     | 
| 468 | 
         
            +
                        num_stages=num_stages,
         
     | 
| 469 | 
         
            +
                    )
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
                    grid_q = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1)
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                    _bwd_kernel_q[grid_q](
         
     | 
| 474 | 
         
            +
                        q,
         
     | 
| 475 | 
         
            +
                        k,
         
     | 
| 476 | 
         
            +
                        v,
         
     | 
| 477 | 
         
            +
                        s,
         
     | 
| 478 | 
         
            +
                        do,
         
     | 
| 479 | 
         
            +
                        dq,
         
     | 
| 480 | 
         
            +
                        dk,
         
     | 
| 481 | 
         
            +
                        dv,
         
     | 
| 482 | 
         
            +
                        q.stride(0),
         
     | 
| 483 | 
         
            +
                        q.stride(1),
         
     | 
| 484 | 
         
            +
                        q.stride(2),
         
     | 
| 485 | 
         
            +
                        q.stride(3),
         
     | 
| 486 | 
         
            +
                        k.stride(0),
         
     | 
| 487 | 
         
            +
                        k.stride(1),
         
     | 
| 488 | 
         
            +
                        k.stride(2),
         
     | 
| 489 | 
         
            +
                        k.stride(3),
         
     | 
| 490 | 
         
            +
                        v.stride(0),
         
     | 
| 491 | 
         
            +
                        v.stride(1),
         
     | 
| 492 | 
         
            +
                        v.stride(2),
         
     | 
| 493 | 
         
            +
                        v.stride(3),
         
     | 
| 494 | 
         
            +
                        do.stride(0),
         
     | 
| 495 | 
         
            +
                        do.stride(1),
         
     | 
| 496 | 
         
            +
                        do.stride(2),
         
     | 
| 497 | 
         
            +
                        do.stride(3),
         
     | 
| 498 | 
         
            +
                        s.stride(0),
         
     | 
| 499 | 
         
            +
                        q.shape[0],
         
     | 
| 500 | 
         
            +
                        q.shape[1],
         
     | 
| 501 | 
         
            +
                        q.shape[2],
         
     | 
| 502 | 
         
            +
                        grid_q[0],
         
     | 
| 503 | 
         
            +
                        BLOCK_M=BLOCK_M,
         
     | 
| 504 | 
         
            +
                        BLOCK_DMODEL_QK=ctx.BLOCK_DMODEL_QK,
         
     | 
| 505 | 
         
            +
                        BLOCK_N=BLOCK_N,
         
     | 
| 506 | 
         
            +
                        BLOCK_DMODEL_V=ctx.BLOCK_DMODEL_V,
         
     | 
| 507 | 
         
            +
                        CAUSAL=ctx.causal,
         
     | 
| 508 | 
         
            +
                        USE_DECAY=ctx.use_decay,
         
     | 
| 509 | 
         
            +
                        num_warps=num_warps,
         
     | 
| 510 | 
         
            +
                        num_stages=num_stages,
         
     | 
| 511 | 
         
            +
                    )
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                    return dq.to(q.dtype), dk, dv, None, None
         
     | 
| 514 | 
         
            +
             
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
            attention = _attention.apply
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
            def lightning_attention(q, k, v, causal, ed):
         
     | 
| 520 | 
         
            +
                d = q.shape[-1]
         
     | 
| 521 | 
         
            +
                e = v.shape[-1]
         
     | 
| 522 | 
         
            +
                # arr = f(d)
         
     | 
| 523 | 
         
            +
                if d >= 128:
         
     | 
| 524 | 
         
            +
                    m = 128
         
     | 
| 525 | 
         
            +
                else:
         
     | 
| 526 | 
         
            +
                    m = 64
         
     | 
| 527 | 
         
            +
                arr = [m * i for i in range(d // m + 1)]
         
     | 
| 528 | 
         
            +
                if arr[-1] != d:
         
     | 
| 529 | 
         
            +
                    arr.append(d)
         
     | 
| 530 | 
         
            +
                n = len(arr)
         
     | 
| 531 | 
         
            +
                output = 0
         
     | 
| 532 | 
         
            +
                for i in range(n - 1):
         
     | 
| 533 | 
         
            +
                    s = arr[i]
         
     | 
| 534 | 
         
            +
                    e = arr[i + 1]
         
     | 
| 535 | 
         
            +
                    q1 = q[..., s:e]
         
     | 
| 536 | 
         
            +
                    k1 = k[..., s:e]
         
     | 
| 537 | 
         
            +
                    o = attention(q1, k1, v, causal, ed)
         
     | 
| 538 | 
         
            +
                    output = output + o
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                return output
         
     | 
    	
        modeling_transnormer.py
    ADDED
    
    | 
         @@ -0,0 +1,943 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #    Copyright 2024 OpenNLPLab
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            #    you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            #    You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #    Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            #    See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            #    limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            # coding=utf-8
         
     | 
| 16 | 
         
            +
            """ PyTorch Transnormer model."""
         
     | 
| 17 | 
         
            +
            import math
         
     | 
| 18 | 
         
            +
            import os
         
     | 
| 19 | 
         
            +
            from typing import List, Optional, Tuple, Union
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            from einops import rearrange
         
     | 
| 22 | 
         
            +
            import numpy as np
         
     | 
| 23 | 
         
            +
            import torch
         
     | 
| 24 | 
         
            +
            from torch import nn
         
     | 
| 25 | 
         
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         
     | 
| 26 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 27 | 
         
            +
            import torch.utils.checkpoint
         
     | 
| 28 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 29 | 
         
            +
            from transformers.modeling_outputs import (
         
     | 
| 30 | 
         
            +
                BaseModelOutputWithPast,
         
     | 
| 31 | 
         
            +
                CausalLMOutputWithPast,
         
     | 
| 32 | 
         
            +
            )
         
     | 
| 33 | 
         
            +
            from transformers.modeling_utils import PreTrainedModel
         
     | 
| 34 | 
         
            +
            from transformers.utils import (
         
     | 
| 35 | 
         
            +
                add_start_docstrings,
         
     | 
| 36 | 
         
            +
                add_start_docstrings_to_model_forward,
         
     | 
| 37 | 
         
            +
                logging,
         
     | 
| 38 | 
         
            +
                replace_return_docstrings,
         
     | 
| 39 | 
         
            +
            )
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            from .configuration_transnormer import TransnormerConfig
         
     | 
| 42 | 
         
            +
            from .norm import SimpleRMSNorm as SimpleRMSNorm_torch
         
     | 
| 43 | 
         
            +
            from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNorm_triton
         
     | 
| 44 | 
         
            +
            from .utils import (
         
     | 
| 45 | 
         
            +
                get_activation_fn,
         
     | 
| 46 | 
         
            +
                get_norm_fn,
         
     | 
| 47 | 
         
            +
                logging_info,
         
     | 
| 48 | 
         
            +
                print_module,
         
     | 
| 49 | 
         
            +
                print_params,
         
     | 
| 50 | 
         
            +
            )
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            _CONFIG_FOR_DOC = "TransnormerConfig"
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            use_triton = eval(os.environ.get("use_triton", default="True"))
         
     | 
| 57 | 
         
            +
            debug = eval(os.environ.get("debug", default="False"))
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            if use_triton:
         
     | 
| 60 | 
         
            +
                try:
         
     | 
| 61 | 
         
            +
                    from .lightning_attention2 import lightning_attention
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                    has_lightning_attention = True
         
     | 
| 64 | 
         
            +
                except (ImportError, ModuleNotFoundError):
         
     | 
| 65 | 
         
            +
                    has_lightning_attention = False
         
     | 
| 66 | 
         
            +
            else:
         
     | 
| 67 | 
         
            +
                has_lightning_attention = False
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            if debug:
         
     | 
| 70 | 
         
            +
                logger.info(f"Use triton: {use_triton}")
         
     | 
| 71 | 
         
            +
                logger.info(f"Use lightning attention: {has_lightning_attention}")
         
     | 
| 72 | 
         
            +
                logger.info(f"Debug mode: {debug}, {type(debug)}")
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            if not has_lightning_attention:
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                def linear_attention(q, k, v, attn_mask):
         
     | 
| 77 | 
         
            +
                    energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
         
     | 
| 78 | 
         
            +
                    energy = energy * attn_mask
         
     | 
| 79 | 
         
            +
                    output = torch.einsum("... n m, ... m d -> ... n d", energy, v)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    return output
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            ########## start Transnormer
         
     | 
| 85 | 
         
            +
            ##### Linearized Relative Positional Encoding: https://openreview.net/forum?id=xoLyps2qWc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
         
     | 
| 86 | 
         
            +
            class Lrpe(nn.Module):
         
     | 
| 87 | 
         
            +
                def __init__(
         
     | 
| 88 | 
         
            +
                    self,
         
     | 
| 89 | 
         
            +
                    num_heads=8,
         
     | 
| 90 | 
         
            +
                    embed_dim=64,
         
     | 
| 91 | 
         
            +
                ):
         
     | 
| 92 | 
         
            +
                    super().__init__()
         
     | 
| 93 | 
         
            +
                    d = num_heads * embed_dim
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    self.index = torch.empty(0)
         
     | 
| 96 | 
         
            +
                    self.theta = nn.Parameter(
         
     | 
| 97 | 
         
            +
                        10000 ** (-2 / d * torch.arange(d)).reshape(num_heads, 1, -1)
         
     | 
| 98 | 
         
            +
                    )
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                def extra_repr(self):
         
     | 
| 101 | 
         
            +
                    return print_module(self)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                def forward(self, x, offset=0):
         
     | 
| 104 | 
         
            +
                    # x: b, h, n, d
         
     | 
| 105 | 
         
            +
                    # offset: for k, v cache
         
     | 
| 106 | 
         
            +
                    n = x.shape[-2]
         
     | 
| 107 | 
         
            +
                    if self.index.shape[0] < n:
         
     | 
| 108 | 
         
            +
                        self.index = torch.arange(n).reshape(1, -1, 1).to(x)
         
     | 
| 109 | 
         
            +
                    index = self.index[:, :n] + offset
         
     | 
| 110 | 
         
            +
                    theta = self.theta * index
         
     | 
| 111 | 
         
            +
                    x = torch.concat([x * torch.cos(theta), x * torch.sin(theta)], dim=-1)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                    return x
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
            class GLU(nn.Module):
         
     | 
| 117 | 
         
            +
                def __init__(self, d1, d2, bias=False):
         
     | 
| 118 | 
         
            +
                    super().__init__()
         
     | 
| 119 | 
         
            +
                    if debug:
         
     | 
| 120 | 
         
            +
                        # get local varables
         
     | 
| 121 | 
         
            +
                        params = locals()
         
     | 
| 122 | 
         
            +
                        # print params
         
     | 
| 123 | 
         
            +
                        print_params(**params)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                    self.l1 = nn.Linear(d1, d2, bias=bias)
         
     | 
| 126 | 
         
            +
                    self.l2 = nn.Linear(d1, d2, bias=bias)
         
     | 
| 127 | 
         
            +
                    self.l3 = nn.Linear(d2, d1, bias=bias)
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                def forward(self, x):
         
     | 
| 130 | 
         
            +
                    o1 = self.l1(x)
         
     | 
| 131 | 
         
            +
                    o2 = self.l2(x)
         
     | 
| 132 | 
         
            +
                    output = o1 * o2
         
     | 
| 133 | 
         
            +
                    output = self.l3(output)
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    return output
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
            class NormLinearAttention(nn.Module):
         
     | 
| 139 | 
         
            +
                def __init__(
         
     | 
| 140 | 
         
            +
                    self,
         
     | 
| 141 | 
         
            +
                    embed_dim,
         
     | 
| 142 | 
         
            +
                    hidden_dim,
         
     | 
| 143 | 
         
            +
                    num_heads,
         
     | 
| 144 | 
         
            +
                    gate_dim=16,
         
     | 
| 145 | 
         
            +
                    linear_act_fun="silu",
         
     | 
| 146 | 
         
            +
                    norm_type="simplermsnorm",
         
     | 
| 147 | 
         
            +
                    linear_use_lrpe=False,
         
     | 
| 148 | 
         
            +
                    bias=False,
         
     | 
| 149 | 
         
            +
                ):
         
     | 
| 150 | 
         
            +
                    super().__init__()
         
     | 
| 151 | 
         
            +
                    if debug:
         
     | 
| 152 | 
         
            +
                        # get local varables
         
     | 
| 153 | 
         
            +
                        params = locals()
         
     | 
| 154 | 
         
            +
                        # print params
         
     | 
| 155 | 
         
            +
                        print_params(**params)
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    self.out_proj = nn.Linear(hidden_dim, embed_dim, bias=bias)
         
     | 
| 158 | 
         
            +
                    self.act = get_activation_fn(linear_act_fun)
         
     | 
| 159 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 160 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 161 | 
         
            +
                    self.head_dim = self.embed_dim // self.num_heads
         
     | 
| 162 | 
         
            +
                    self.norm = get_norm_fn(norm_type)(hidden_dim)
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    self.linear_use_lrpe = linear_use_lrpe
         
     | 
| 165 | 
         
            +
                    if self.linear_use_lrpe:
         
     | 
| 166 | 
         
            +
                        self.lrpe = Lrpe(
         
     | 
| 167 | 
         
            +
                            num_heads=self.num_heads,
         
     | 
| 168 | 
         
            +
                            embed_dim=self.head_dim,
         
     | 
| 169 | 
         
            +
                        )
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                    self.qkv_proj = nn.Linear(embed_dim, 3 * hidden_dim, bias=bias)
         
     | 
| 172 | 
         
            +
                    self.output_gate =  nn.Sequential(
         
     | 
| 173 | 
         
            +
                        nn.Linear(embed_dim, gate_dim, bias=bias),
         
     | 
| 174 | 
         
            +
                        nn.Linear(gate_dim, hidden_dim, bias=bias),
         
     | 
| 175 | 
         
            +
                    )
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                    # for inference only
         
     | 
| 178 | 
         
            +
                    self.offset = 0
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                def forward(
         
     | 
| 181 | 
         
            +
                    self,
         
     | 
| 182 | 
         
            +
                    x,
         
     | 
| 183 | 
         
            +
                    attn_mask: Optional[torch.Tensor] = None,  # (b, h, n, m)
         
     | 
| 184 | 
         
            +
                    attn_padding_mask: Optional[torch.Tensor] = None,  # (b, m)
         
     | 
| 185 | 
         
            +
                    output_attentions: bool = False,
         
     | 
| 186 | 
         
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 187 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 188 | 
         
            +
                    slope_rate: Optional[torch.Tensor] = None,
         
     | 
| 189 | 
         
            +
                ):
         
     | 
| 190 | 
         
            +
                    do_eval = eval(os.environ.get("do_eval", default="False"))
         
     | 
| 191 | 
         
            +
                    if (not self.training) and (not do_eval):
         
     | 
| 192 | 
         
            +
                        return self.inference(
         
     | 
| 193 | 
         
            +
                            x,
         
     | 
| 194 | 
         
            +
                            attn_mask,
         
     | 
| 195 | 
         
            +
                            attn_padding_mask,
         
     | 
| 196 | 
         
            +
                            output_attentions,
         
     | 
| 197 | 
         
            +
                            past_key_value,
         
     | 
| 198 | 
         
            +
                            use_cache,
         
     | 
| 199 | 
         
            +
                            slope_rate,
         
     | 
| 200 | 
         
            +
                        )
         
     | 
| 201 | 
         
            +
                    # x: b n d
         
     | 
| 202 | 
         
            +
                    b, n, d = x.shape
         
     | 
| 203 | 
         
            +
                    # linear map
         
     | 
| 204 | 
         
            +
                    qkv = self.act(self.qkv_proj(x))
         
     | 
| 205 | 
         
            +
                    q, k, v = qkv.split([d, d, d], dim=-1)
         
     | 
| 206 | 
         
            +
                    
         
     | 
| 207 | 
         
            +
                    # reshape
         
     | 
| 208 | 
         
            +
                    q, k, v = map(
         
     | 
| 209 | 
         
            +
                        lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads), [q, k, v]
         
     | 
| 210 | 
         
            +
                    )
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    q_offset = 0
         
     | 
| 213 | 
         
            +
                    # lrpe relys on position, get cache first
         
     | 
| 214 | 
         
            +
                    if past_key_value is not None:
         
     | 
| 215 | 
         
            +
                        # reuse k, v, for evaluation only
         
     | 
| 216 | 
         
            +
                        k = torch.cat([past_key_value[0], k], dim=-2)
         
     | 
| 217 | 
         
            +
                        v = torch.cat([past_key_value[1], v], dim=-2)
         
     | 
| 218 | 
         
            +
                        q_offset = past_key_value[0].shape[-2]
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                    past_key_value = (k, v) if use_cache else None
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    # lrpe
         
     | 
| 223 | 
         
            +
                    if self.linear_use_lrpe:
         
     | 
| 224 | 
         
            +
                        q = self.lrpe(q, offset=q_offset)
         
     | 
| 225 | 
         
            +
                        k = self.lrpe(k)
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                    if attn_padding_mask is not None:
         
     | 
| 228 | 
         
            +
                        v = v.masked_fill(
         
     | 
| 229 | 
         
            +
                            (1 - attn_padding_mask).unsqueeze(1).unsqueeze(-1).to(torch.bool), 0
         
     | 
| 230 | 
         
            +
                        )
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    if not has_lightning_attention:
         
     | 
| 233 | 
         
            +
                        if attn_mask == None:
         
     | 
| 234 | 
         
            +
                            attn_mask = (torch.tril(torch.ones(n, n))).to(q)
         
     | 
| 235 | 
         
            +
                        if slope_rate != None:
         
     | 
| 236 | 
         
            +
                            attn_mask = torch.exp(slope_rate * attn_mask)
         
     | 
| 237 | 
         
            +
                        output = linear_attention(q, k, v, attn_mask)
         
     | 
| 238 | 
         
            +
                    else:
         
     | 
| 239 | 
         
            +
                        output = lightning_attention(
         
     | 
| 240 | 
         
            +
                            q, k, v, True, slope_rate.squeeze(-1).squeeze(-1)
         
     | 
| 241 | 
         
            +
                        )
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    # reshape
         
     | 
| 244 | 
         
            +
                    output = rearrange(output, "b h n d -> b n (h d)")
         
     | 
| 245 | 
         
            +
                    # normalize
         
     | 
| 246 | 
         
            +
                    output = self.norm(output)
         
     | 
| 247 | 
         
            +
                    # gate
         
     | 
| 248 | 
         
            +
                    output = F.sigmoid(self.output_gate(x)) * output
         
     | 
| 249 | 
         
            +
                    # outproj
         
     | 
| 250 | 
         
            +
                    output = self.out_proj(output)
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                    if not output_attentions:
         
     | 
| 253 | 
         
            +
                        attn_weights = None
         
     | 
| 254 | 
         
            +
                    else:
         
     | 
| 255 | 
         
            +
                        attn_weights = torch.einsum("... n d, ... m d -> ... n m", q, k)
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                    return output, attn_weights, past_key_value
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                def inference(
         
     | 
| 260 | 
         
            +
                    self,
         
     | 
| 261 | 
         
            +
                    x,
         
     | 
| 262 | 
         
            +
                    attn_mask: Optional[torch.Tensor] = None,  # (b, h, n, m)
         
     | 
| 263 | 
         
            +
                    attn_padding_mask: Optional[torch.Tensor] = None,  # (b, m)
         
     | 
| 264 | 
         
            +
                    output_attentions: bool = False,
         
     | 
| 265 | 
         
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 266 | 
         
            +
                    use_cache: bool = False,
         
     | 
| 267 | 
         
            +
                    slope_rate: Optional[torch.Tensor] = None,  # (h, 1, 1)
         
     | 
| 268 | 
         
            +
                ):
         
     | 
| 269 | 
         
            +
                    # x: b n d
         
     | 
| 270 | 
         
            +
                    b, n, d = x.shape
         
     | 
| 271 | 
         
            +
                    # linear map
         
     | 
| 272 | 
         
            +
                    qkv = self.act(self.qkv_proj(x))
         
     | 
| 273 | 
         
            +
                    q, k, v = qkv.split([d, d, d], dim=-1)
         
     | 
| 274 | 
         
            +
                    # reshape
         
     | 
| 275 | 
         
            +
                    q, k, v = map(
         
     | 
| 276 | 
         
            +
                        lambda x: rearrange(x, "b n (h d) -> b h n d", h=self.num_heads), [q, k, v]
         
     | 
| 277 | 
         
            +
                    )
         
     | 
| 278 | 
         
            +
                    
         
     | 
| 279 | 
         
            +
                    # rpe
         
     | 
| 280 | 
         
            +
                    if self.linear_use_lrpe:
         
     | 
| 281 | 
         
            +
                        q = self.lrpe(q, offset=self.offset)
         
     | 
| 282 | 
         
            +
                        k = self.lrpe(k)
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                    if past_key_value == None:
         
     | 
| 285 | 
         
            +
                        self.offset = q.shape[-2]
         
     | 
| 286 | 
         
            +
                    else:
         
     | 
| 287 | 
         
            +
                        self.offset += 1
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    ratio = torch.exp(-slope_rate)
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                    # only use for the first time
         
     | 
| 292 | 
         
            +
                    if past_key_value == None:
         
     | 
| 293 | 
         
            +
                        if attn_mask == None:
         
     | 
| 294 | 
         
            +
                            attn_mask = (torch.tril(torch.ones(n, n))).to(q)
         
     | 
| 295 | 
         
            +
                        if slope_rate != None:
         
     | 
| 296 | 
         
            +
                            attn_mask = torch.exp(slope_rate * attn_mask)
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                        if attn_padding_mask is not None:
         
     | 
| 299 | 
         
            +
                            attn_mask = attn_mask.masked_fill(
         
     | 
| 300 | 
         
            +
                                (1 - attn_padding_mask).unsqueeze(1).unsqueeze(2).to(torch.bool),
         
     | 
| 301 | 
         
            +
                                0,
         
     | 
| 302 | 
         
            +
                            )
         
     | 
| 303 | 
         
            +
                        energy = torch.einsum("... n d, ... m d -> ... n m", q, k)
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                        if attn_mask != None:
         
     | 
| 306 | 
         
            +
                            energy = energy * attn_mask
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                        output = torch.einsum("... n m, ... m d -> ... n d", energy, v)
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                        eval_and_not_generate = eval(
         
     | 
| 311 | 
         
            +
                            os.environ.get("eval_and_not_generate", default="False")
         
     | 
| 312 | 
         
            +
                        )
         
     | 
| 313 | 
         
            +
                        if eval_and_not_generate:
         
     | 
| 314 | 
         
            +
                            kv = None
         
     | 
| 315 | 
         
            +
                        else:
         
     | 
| 316 | 
         
            +
                            # b, h, n, e, d
         
     | 
| 317 | 
         
            +
                            kv_outproduct = torch.einsum("... n e, ... n d -> ... n e d", k, v)
         
     | 
| 318 | 
         
            +
                            # 1, 1, n, 1, 1
         
     | 
| 319 | 
         
            +
                            index = torch.arange(n - 1, -1, -1).reshape(1, 1, -1, 1, 1).to(x)
         
     | 
| 320 | 
         
            +
                            # (h, 1, 1) -> (1, h, 1, 1, 1); (1, h, 1, 1, 1), (1, 1, n, 1, 1) -> (1, h, n, 1, 1)
         
     | 
| 321 | 
         
            +
                            decay = ratio.unsqueeze(0).unsqueeze(-1) ** index
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                            kv_outproduct_with_decay = kv_outproduct * decay
         
     | 
| 324 | 
         
            +
                            kv = torch.sum(kv_outproduct_with_decay, dim=-3)
         
     | 
| 325 | 
         
            +
                    else:
         
     | 
| 326 | 
         
            +
                        kv = past_key_value
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                        output = []
         
     | 
| 329 | 
         
            +
                        for i in range(n):
         
     | 
| 330 | 
         
            +
                            kv = ratio * kv + torch.einsum(
         
     | 
| 331 | 
         
            +
                                "... n d, ... n e -> ... d e",
         
     | 
| 332 | 
         
            +
                                k[:, :, i : i + 1],
         
     | 
| 333 | 
         
            +
                                v[:, :, i : i + 1],
         
     | 
| 334 | 
         
            +
                            )
         
     | 
| 335 | 
         
            +
                            qkv = torch.einsum(
         
     | 
| 336 | 
         
            +
                                "... n e, ... e d -> ... n d", q[:, :, i : i + 1], kv
         
     | 
| 337 | 
         
            +
                            )
         
     | 
| 338 | 
         
            +
                            output.append(qkv)
         
     | 
| 339 | 
         
            +
                        output = torch.concat(output, dim=-2)
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                    # reshape
         
     | 
| 342 | 
         
            +
                    output = rearrange(output, "b h n d -> b n (h d)")
         
     | 
| 343 | 
         
            +
                    # normalize
         
     | 
| 344 | 
         
            +
                    output = self.norm(output)
         
     | 
| 345 | 
         
            +
                    # gate
         
     | 
| 346 | 
         
            +
                    output = F.sigmoid(self.output_gate(x)) * output
         
     | 
| 347 | 
         
            +
                    # outproj
         
     | 
| 348 | 
         
            +
                    output = self.out_proj(output)
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    attn_weights = None
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                    return output, attn_weights, kv
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
            class TransnormerDecoderLayer(nn.Module):
         
     | 
| 356 | 
         
            +
                def __init__(self, config: TransnormerConfig):
         
     | 
| 357 | 
         
            +
                    super().__init__()
         
     | 
| 358 | 
         
            +
                    self.embed_dim = config.decoder_embed_dim
         
     | 
| 359 | 
         
            +
                    ##### normalize
         
     | 
| 360 | 
         
            +
                    norm_type = config.norm_type
         
     | 
| 361 | 
         
            +
                    if debug:
         
     | 
| 362 | 
         
            +
                        logging_info(f"Decoder Norm Type: {norm_type}")
         
     | 
| 363 | 
         
            +
                    self.token_norm = get_norm_fn(norm_type)(self.embed_dim)
         
     | 
| 364 | 
         
            +
                    self.channel_norm = get_norm_fn(norm_type)(self.embed_dim)
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                    ##### token mixer
         
     | 
| 367 | 
         
            +
                    self.token_mixer = self.build_token_mixer(
         
     | 
| 368 | 
         
            +
                        self.embed_dim,
         
     | 
| 369 | 
         
            +
                        config,
         
     | 
| 370 | 
         
            +
                    )
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                    ##### channel mixer
         
     | 
| 373 | 
         
            +
                    self.glu_dim = config.glu_dim
         
     | 
| 374 | 
         
            +
                    if self.glu_dim == -1:
         
     | 
| 375 | 
         
            +
                        self.glu_dim = self.embed_dim
         
     | 
| 376 | 
         
            +
                    bias = config.bias
         
     | 
| 377 | 
         
            +
                    self.channel_mixer = GLU(self.embed_dim, self.glu_dim, bias)
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                def build_token_mixer(self, embed_dim, config):
         
     | 
| 380 | 
         
            +
                    return NormLinearAttention(
         
     | 
| 381 | 
         
            +
                        embed_dim=embed_dim,
         
     | 
| 382 | 
         
            +
                        hidden_dim=config.hidden_dim,
         
     | 
| 383 | 
         
            +
                        num_heads=config.decoder_attention_heads,
         
     | 
| 384 | 
         
            +
                        gate_dim=config.gate_dim,
         
     | 
| 385 | 
         
            +
                        linear_act_fun=config.linear_act_fun,
         
     | 
| 386 | 
         
            +
                        norm_type=config.norm_type,
         
     | 
| 387 | 
         
            +
                        linear_use_lrpe=config.linear_use_lrpe,
         
     | 
| 388 | 
         
            +
                        bias=config.bias,
         
     | 
| 389 | 
         
            +
                    )
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                def residual_connection(self, x, residual):
         
     | 
| 392 | 
         
            +
                    return residual + x
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                def forward(
         
     | 
| 395 | 
         
            +
                    self,
         
     | 
| 396 | 
         
            +
                    x,
         
     | 
| 397 | 
         
            +
                    attn_mask: Optional[torch.Tensor] = None,
         
     | 
| 398 | 
         
            +
                    attn_padding_mask: Optional[torch.Tensor] = None,
         
     | 
| 399 | 
         
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 400 | 
         
            +
                    output_attentions: Optional[bool] = False,
         
     | 
| 401 | 
         
            +
                    use_cache: Optional[bool] = False,
         
     | 
| 402 | 
         
            +
                    slope_rate: Optional[torch.Tensor] = None,  # (h, 1, 1)
         
     | 
| 403 | 
         
            +
                ):
         
     | 
| 404 | 
         
            +
                    residual = x
         
     | 
| 405 | 
         
            +
                    x = self.token_norm(x)
         
     | 
| 406 | 
         
            +
                    x, self_attn_weights, present_key_value = self.token_mixer(
         
     | 
| 407 | 
         
            +
                        x=x,
         
     | 
| 408 | 
         
            +
                        attn_mask=attn_mask,
         
     | 
| 409 | 
         
            +
                        attn_padding_mask=attn_padding_mask,
         
     | 
| 410 | 
         
            +
                        past_key_value=past_key_value,
         
     | 
| 411 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 412 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 413 | 
         
            +
                        slope_rate=slope_rate,
         
     | 
| 414 | 
         
            +
                    )
         
     | 
| 415 | 
         
            +
                    x = self.residual_connection(x, residual)
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                    residual = x
         
     | 
| 418 | 
         
            +
                    x = self.channel_norm(x)
         
     | 
| 419 | 
         
            +
                    x = self.channel_mixer(x)
         
     | 
| 420 | 
         
            +
                    x = self.residual_connection(x, residual)
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                    outputs = (x,)
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                    if output_attentions:
         
     | 
| 425 | 
         
            +
                        outputs += (self_attn_weights,)
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                    if use_cache:
         
     | 
| 428 | 
         
            +
                        outputs += (present_key_value,)
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                    return outputs
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
            TRANSNORMER_START_DOCSTRING = r"""
         
     | 
| 434 | 
         
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         
     | 
| 435 | 
         
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         
     | 
| 436 | 
         
            +
                etc.)
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         
     | 
| 439 | 
         
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         
     | 
| 440 | 
         
            +
                and behavior.
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
                Parameters:
         
     | 
| 443 | 
         
            +
                    config ([`TransnormerConfig`]):
         
     | 
| 444 | 
         
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         
     | 
| 445 | 
         
            +
                        load the weights associated with the model, only the configuration. Check out the
         
     | 
| 446 | 
         
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         
     | 
| 447 | 
         
            +
            """
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
            @add_start_docstrings(
         
     | 
| 451 | 
         
            +
                TRANSNORMER_START_DOCSTRING,
         
     | 
| 452 | 
         
            +
            )
         
     | 
| 453 | 
         
            +
            class TransnormerPreTrainedModel(PreTrainedModel):
         
     | 
| 454 | 
         
            +
                config_class = TransnormerConfig
         
     | 
| 455 | 
         
            +
                base_model_prefix = "model"
         
     | 
| 456 | 
         
            +
                supports_gradient_checkpointing = True
         
     | 
| 457 | 
         
            +
                _no_split_modules = ["TransnormerDecoderLayer"]
         
     | 
| 458 | 
         
            +
                _skip_keys_device_placement = "past_key_values"
         
     | 
| 459 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
         
     | 
| 460 | 
         
            +
             
     | 
| 461 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 462 | 
         
            +
                    std = self.config.init_std
         
     | 
| 463 | 
         
            +
                    if isinstance(module, nn.Linear):
         
     | 
| 464 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         
     | 
| 465 | 
         
            +
                        if module.bias is not None:
         
     | 
| 466 | 
         
            +
                            module.bias.data.zero_()
         
     | 
| 467 | 
         
            +
                    elif isinstance(module, nn.Embedding):
         
     | 
| 468 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         
     | 
| 469 | 
         
            +
                        if module.padding_idx is not None:
         
     | 
| 470 | 
         
            +
                            module.weight.data[module.padding_idx].zero_()
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 473 | 
         
            +
                    if isinstance(module, TransnormerModel):
         
     | 
| 474 | 
         
            +
                        module.gradient_checkpointing = value
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
            TRANSNORMER_INPUTS_DOCSTRING = r"""
         
     | 
| 478 | 
         
            +
                Args:
         
     | 
| 479 | 
         
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         
     | 
| 480 | 
         
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         
     | 
| 481 | 
         
            +
                        it.
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         
     | 
| 484 | 
         
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                        [What are input IDs?](../glossary#input-ids)
         
     | 
| 487 | 
         
            +
                    attn_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 488 | 
         
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 491 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                        [What are attention masks?](../glossary#attention-mask)
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         
     | 
| 496 | 
         
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         
     | 
| 497 | 
         
            +
             
     | 
| 498 | 
         
            +
                        If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
         
     | 
| 499 | 
         
            +
                        `past_key_values`).
         
     | 
| 500 | 
         
            +
             
     | 
| 501 | 
         
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attn_mask`]
         
     | 
| 502 | 
         
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         
     | 
| 503 | 
         
            +
                        information on the default strategy.
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                        - 1 indicates the head is **not masked**,
         
     | 
| 506 | 
         
            +
                        - 0 indicates the head is **masked**.
         
     | 
| 507 | 
         
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 508 | 
         
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         
     | 
| 509 | 
         
            +
                        config.n_positions - 1]`.
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                        [What are position IDs?](../glossary#position-ids)
         
     | 
| 512 | 
         
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         
     | 
| 513 | 
         
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         
     | 
| 514 | 
         
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         
     | 
| 515 | 
         
            +
                        `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         
     | 
| 518 | 
         
            +
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
                        If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
         
     | 
| 521 | 
         
            +
                        don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
         
     | 
| 522 | 
         
            +
                        `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         
     | 
| 523 | 
         
            +
                    use_cache (`bool`, *optional*):
         
     | 
| 524 | 
         
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         
     | 
| 525 | 
         
            +
                        `past_key_values`).
         
     | 
| 526 | 
         
            +
                    output_attentions (`bool`, *optional*):
         
     | 
| 527 | 
         
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         
     | 
| 528 | 
         
            +
                        tensors for more detail.
         
     | 
| 529 | 
         
            +
                    output_hidden_states (`bool`, *optional*):
         
     | 
| 530 | 
         
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         
     | 
| 531 | 
         
            +
                        more detail.
         
     | 
| 532 | 
         
            +
                    return_dict (`bool`, *optional*):
         
     | 
| 533 | 
         
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         
     | 
| 534 | 
         
            +
            """
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
            @add_start_docstrings(
         
     | 
| 538 | 
         
            +
                TRANSNORMER_START_DOCSTRING,
         
     | 
| 539 | 
         
            +
            )
         
     | 
| 540 | 
         
            +
            class TransnormerModel(TransnormerPreTrainedModel):
         
     | 
| 541 | 
         
            +
                """
         
     | 
| 542 | 
         
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`TransnormerDecoderLayer`]
         
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
                Args:
         
     | 
| 545 | 
         
            +
                    config: TransnormerConfig
         
     | 
| 546 | 
         
            +
                """
         
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
                def __init__(self, config: TransnormerConfig):
         
     | 
| 549 | 
         
            +
                    super().__init__(config)
         
     | 
| 550 | 
         
            +
                    # hf origin
         
     | 
| 551 | 
         
            +
                    self.padding_idx = config.pad_token_id
         
     | 
| 552 | 
         
            +
                    self.vocab_size = config.vocab_size
         
     | 
| 553 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 554 | 
         
            +
                    # mask
         
     | 
| 555 | 
         
            +
                    self._linear_attn_mask = torch.empty(0)
         
     | 
| 556 | 
         
            +
                    # config
         
     | 
| 557 | 
         
            +
                    self.linear_use_lrpe_list = config.linear_use_lrpe_list
         
     | 
| 558 | 
         
            +
                    self.num_layers = config.decoder_layers
         
     | 
| 559 | 
         
            +
                    # h, 1, 1
         
     | 
| 560 | 
         
            +
                    self.slopes = self._build_slope_tensor(config.decoder_attention_heads)
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                    # params
         
     | 
| 563 | 
         
            +
                    self.embed_tokens = nn.Embedding(
         
     | 
| 564 | 
         
            +
                        config.vocab_size, config.decoder_embed_dim, self.padding_idx
         
     | 
| 565 | 
         
            +
                    )
         
     | 
| 566 | 
         
            +
                    self.layers = nn.ModuleList([])
         
     | 
| 567 | 
         
            +
                    for i in range(config.decoder_layers):
         
     | 
| 568 | 
         
            +
                        if len(self.linear_use_lrpe_list) > 0:
         
     | 
| 569 | 
         
            +
                            config.linear_use_lrpe = self.linear_use_lrpe_list[i]
         
     | 
| 570 | 
         
            +
                        self.layers.append(TransnormerDecoderLayer(config))
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                    self.final_norm = get_norm_fn(config.norm_type)(config.decoder_embed_dim)
         
     | 
| 573 | 
         
            +
                    self.embed_dim = config.decoder_embed_dim
         
     | 
| 574 | 
         
            +
                    self.embed_scale = (
         
     | 
| 575 | 
         
            +
                        1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
         
     | 
| 576 | 
         
            +
                    )
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 579 | 
         
            +
                    self.post_init()
         
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
                @staticmethod
         
     | 
| 582 | 
         
            +
                def _build_slope_tensor(n_attention_heads: int):
         
     | 
| 583 | 
         
            +
                    def get_slopes(n):
         
     | 
| 584 | 
         
            +
                        def get_slopes_power_of_2(n):
         
     | 
| 585 | 
         
            +
                            start = 2 ** (-(2 ** -(math.log2(n) - 3)))
         
     | 
| 586 | 
         
            +
                            ratio = start
         
     | 
| 587 | 
         
            +
                            return [start * ratio**i for i in range(n)]
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                        if math.log2(n).is_integer():
         
     | 
| 590 | 
         
            +
                            return get_slopes_power_of_2(
         
     | 
| 591 | 
         
            +
                                n
         
     | 
| 592 | 
         
            +
                            )  # In the paper, we only train models that have 2^a heads for some a. This function has
         
     | 
| 593 | 
         
            +
                        else:  # some good properties that only occur when the input is a power of 2. To maintain that even
         
     | 
| 594 | 
         
            +
                            closest_power_of_2 = 2 ** math.floor(
         
     | 
| 595 | 
         
            +
                                math.log2(n)
         
     | 
| 596 | 
         
            +
                            )  # when the number of heads is not a power of 2, we use this workaround.
         
     | 
| 597 | 
         
            +
                            return (
         
     | 
| 598 | 
         
            +
                                get_slopes_power_of_2(closest_power_of_2)
         
     | 
| 599 | 
         
            +
                                + get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
         
     | 
| 600 | 
         
            +
                            )
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                    # h, 1, 1
         
     | 
| 603 | 
         
            +
                    slopes = torch.tensor(get_slopes(n_attention_heads)).reshape(
         
     | 
| 604 | 
         
            +
                        n_attention_heads, 1, 1
         
     | 
| 605 | 
         
            +
                    )
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                    return slopes
         
     | 
| 608 | 
         
            +
             
     | 
| 609 | 
         
            +
                def extra_repr(self):
         
     | 
| 610 | 
         
            +
                    return print_module(self)
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 613 | 
         
            +
                    return self.embed_tokens
         
     | 
| 614 | 
         
            +
             
     | 
| 615 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 616 | 
         
            +
                    self.embed_tokens = value
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                def _prepare_decoder_linear_attn_mask(
         
     | 
| 619 | 
         
            +
                    self, input_shape, inputs_embeds, past_key_values_length
         
     | 
| 620 | 
         
            +
                ):
         
     | 
| 621 | 
         
            +
                    bsz, tgt_len = input_shape
         
     | 
| 622 | 
         
            +
                    src_len = tgt_len + past_key_values_length
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                    def power_log(x):
         
     | 
| 625 | 
         
            +
                        return 2 ** (math.ceil(math.log(x, 2)))
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
                    n = power_log(max(tgt_len, src_len))
         
     | 
| 628 | 
         
            +
                    if self._linear_attn_mask.shape[-1] < n:
         
     | 
| 629 | 
         
            +
             
     | 
| 630 | 
         
            +
                        def get_mask(n):
         
     | 
| 631 | 
         
            +
                            mask = torch.triu(torch.zeros(n, n).float().fill_(float("-inf")), 1)
         
     | 
| 632 | 
         
            +
                            # no slope version
         
     | 
| 633 | 
         
            +
                            # -n, ..., -2, -1, 0
         
     | 
| 634 | 
         
            +
                            for i in range(n):
         
     | 
| 635 | 
         
            +
                                x = torch.arange(i + 1)
         
     | 
| 636 | 
         
            +
                                y = x
         
     | 
| 637 | 
         
            +
                                mask[i, : i + 1] = -torch.flip(y, [0])
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
                            return mask
         
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
                        arr = []
         
     | 
| 642 | 
         
            +
                        for slope in self.slopes:
         
     | 
| 643 | 
         
            +
                            arr.append(get_mask(n))
         
     | 
| 644 | 
         
            +
                        self._linear_attn_mask = torch.stack(arr, dim=0).to(inputs_embeds)
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
                    linear_attn_mask = self._linear_attn_mask[:, -tgt_len:, -src_len:]
         
     | 
| 647 | 
         
            +
                    num_heads = linear_attn_mask.shape[0]
         
     | 
| 648 | 
         
            +
             
     | 
| 649 | 
         
            +
                    return linear_attn_mask[None, :, :, :].expand(bsz, num_heads, tgt_len, src_len)
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                @add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
         
     | 
| 652 | 
         
            +
                def forward(
         
     | 
| 653 | 
         
            +
                    self,
         
     | 
| 654 | 
         
            +
                    input_ids: torch.LongTensor = None,
         
     | 
| 655 | 
         
            +
                    attn_padding_mask: Optional[torch.Tensor] = None,
         
     | 
| 656 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 657 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 658 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 659 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 660 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 661 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 662 | 
         
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         
     | 
| 663 | 
         
            +
                    output_attentions = (
         
     | 
| 664 | 
         
            +
                        output_attentions
         
     | 
| 665 | 
         
            +
                        if output_attentions is not None
         
     | 
| 666 | 
         
            +
                        else self.config.output_attentions
         
     | 
| 667 | 
         
            +
                    )
         
     | 
| 668 | 
         
            +
                    output_hidden_states = (
         
     | 
| 669 | 
         
            +
                        output_hidden_states
         
     | 
| 670 | 
         
            +
                        if output_hidden_states is not None
         
     | 
| 671 | 
         
            +
                        else self.config.output_hidden_states
         
     | 
| 672 | 
         
            +
                    )
         
     | 
| 673 | 
         
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         
     | 
| 674 | 
         
            +
             
     | 
| 675 | 
         
            +
                    return_dict = (
         
     | 
| 676 | 
         
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 677 | 
         
            +
                    )
         
     | 
| 678 | 
         
            +
             
     | 
| 679 | 
         
            +
                    # retrieve input_ids and inputs_embeds
         
     | 
| 680 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 681 | 
         
            +
                        raise ValueError(
         
     | 
| 682 | 
         
            +
                            "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
         
     | 
| 683 | 
         
            +
                        )
         
     | 
| 684 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 685 | 
         
            +
                        batch_size, seq_length = input_ids.shape
         
     | 
| 686 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 687 | 
         
            +
                        batch_size, seq_length, _ = inputs_embeds.shape
         
     | 
| 688 | 
         
            +
                    else:
         
     | 
| 689 | 
         
            +
                        raise ValueError(
         
     | 
| 690 | 
         
            +
                            "You have to specify either decoder_input_ids or decoder_inputs_embeds"
         
     | 
| 691 | 
         
            +
                        )
         
     | 
| 692 | 
         
            +
             
     | 
| 693 | 
         
            +
                    seq_length_with_past = seq_length
         
     | 
| 694 | 
         
            +
                    past_key_values_length = 0
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
                    if past_key_values is not None:
         
     | 
| 697 | 
         
            +
                        past_key_values_length = past_key_values[0][0].shape[-2]
         
     | 
| 698 | 
         
            +
                        seq_length_with_past = seq_length_with_past + past_key_values_length
         
     | 
| 699 | 
         
            +
                    
         
     | 
| 700 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 701 | 
         
            +
                        # !!! use embed_scale
         
     | 
| 702 | 
         
            +
                        inputs_embeds = self.embed_scale * self.embed_tokens(input_ids)
         
     | 
| 703 | 
         
            +
             
     | 
| 704 | 
         
            +
                    hidden_states = inputs_embeds
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                    if self.gradient_checkpointing and self.training:
         
     | 
| 707 | 
         
            +
                        if use_cache:
         
     | 
| 708 | 
         
            +
                            logger.warning_once(
         
     | 
| 709 | 
         
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         
     | 
| 710 | 
         
            +
                            )
         
     | 
| 711 | 
         
            +
                            use_cache = False
         
     | 
| 712 | 
         
            +
             
     | 
| 713 | 
         
            +
                    # decoder layers
         
     | 
| 714 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 715 | 
         
            +
                    all_self_attns = () if output_attentions else None
         
     | 
| 716 | 
         
            +
                    next_decoder_cache = () if use_cache else None
         
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
                    ##### norm linear layers
         
     | 
| 719 | 
         
            +
                    linear_attn_padding_mask = attn_padding_mask
         
     | 
| 720 | 
         
            +
                    linear_attn_mask = self._prepare_decoder_linear_attn_mask(
         
     | 
| 721 | 
         
            +
                        (batch_size, seq_length), inputs_embeds, past_key_values_length
         
     | 
| 722 | 
         
            +
                    )
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
                    slope_rates = [self.slopes.to(input_ids.device) for _ in range(self.num_layers)]
         
     | 
| 725 | 
         
            +
             
     | 
| 726 | 
         
            +
                    for idx, layer in enumerate(self.layers):
         
     | 
| 727 | 
         
            +
                        if output_hidden_states:
         
     | 
| 728 | 
         
            +
                            all_hidden_states += (hidden_states,)
         
     | 
| 729 | 
         
            +
             
     | 
| 730 | 
         
            +
                        past_key_value = (
         
     | 
| 731 | 
         
            +
                            past_key_values[idx] if past_key_values is not None else None
         
     | 
| 732 | 
         
            +
                        )
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
                        slope_rate = slope_rates[idx]
         
     | 
| 735 | 
         
            +
                        slope_rate = slope_rate * (1 - idx / (self.num_layers - 1) + 1e-5)
         
     | 
| 736 | 
         
            +
                        mask = linear_attn_mask
         
     | 
| 737 | 
         
            +
                            
         
     | 
| 738 | 
         
            +
                        layer_outputs = layer(
         
     | 
| 739 | 
         
            +
                            hidden_states,
         
     | 
| 740 | 
         
            +
                            attn_mask=mask,
         
     | 
| 741 | 
         
            +
                            attn_padding_mask=linear_attn_padding_mask,
         
     | 
| 742 | 
         
            +
                            past_key_value=past_key_value,
         
     | 
| 743 | 
         
            +
                            output_attentions=output_attentions,
         
     | 
| 744 | 
         
            +
                            use_cache=use_cache,
         
     | 
| 745 | 
         
            +
                            slope_rate=slope_rate,
         
     | 
| 746 | 
         
            +
                        )
         
     | 
| 747 | 
         
            +
             
     | 
| 748 | 
         
            +
                        hidden_states = layer_outputs[0]
         
     | 
| 749 | 
         
            +
             
     | 
| 750 | 
         
            +
                        if use_cache:
         
     | 
| 751 | 
         
            +
                            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
         
     | 
| 752 | 
         
            +
             
     | 
| 753 | 
         
            +
                        if output_attentions:
         
     | 
| 754 | 
         
            +
                            all_self_attns += (layer_outputs[1],)
         
     | 
| 755 | 
         
            +
                        
         
     | 
| 756 | 
         
            +
                        # if idx == 0:
         
     | 
| 757 | 
         
            +
                        #     break
         
     | 
| 758 | 
         
            +
             
     | 
| 759 | 
         
            +
                    hidden_states = self.final_norm(hidden_states)
         
     | 
| 760 | 
         
            +
             
     | 
| 761 | 
         
            +
                    # add hidden states from the last decoder layer
         
     | 
| 762 | 
         
            +
                    if output_hidden_states:
         
     | 
| 763 | 
         
            +
                        all_hidden_states += (hidden_states,)
         
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
                    next_cache = next_decoder_cache if use_cache else None
         
     | 
| 766 | 
         
            +
                    if not return_dict:
         
     | 
| 767 | 
         
            +
                        return tuple(
         
     | 
| 768 | 
         
            +
                            v
         
     | 
| 769 | 
         
            +
                            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
         
     | 
| 770 | 
         
            +
                            if v is not None
         
     | 
| 771 | 
         
            +
                        )
         
     | 
| 772 | 
         
            +
                    return BaseModelOutputWithPast(
         
     | 
| 773 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 774 | 
         
            +
                        past_key_values=next_cache,
         
     | 
| 775 | 
         
            +
                        hidden_states=all_hidden_states,
         
     | 
| 776 | 
         
            +
                        attentions=all_self_attns,
         
     | 
| 777 | 
         
            +
                    )
         
     | 
| 778 | 
         
            +
             
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
            class TransnormerForCausalLM(TransnormerPreTrainedModel):
         
     | 
| 781 | 
         
            +
                def __init__(self, config):
         
     | 
| 782 | 
         
            +
                    super().__init__(config)
         
     | 
| 783 | 
         
            +
                    self.model = TransnormerModel(config)
         
     | 
| 784 | 
         
            +
                    if debug:
         
     | 
| 785 | 
         
            +
                        logging_info(self.model)
         
     | 
| 786 | 
         
            +
             
     | 
| 787 | 
         
            +
                    # the lm_head weight is automatically tied to the embed tokens weight
         
     | 
| 788 | 
         
            +
                    self.lm_head = nn.Linear(
         
     | 
| 789 | 
         
            +
                        config.decoder_embed_dim, config.vocab_size, bias=False
         
     | 
| 790 | 
         
            +
                    )
         
     | 
| 791 | 
         
            +
             
     | 
| 792 | 
         
            +
                    # Initialize weights and apply final processing
         
     | 
| 793 | 
         
            +
                    self.post_init()
         
     | 
| 794 | 
         
            +
             
     | 
| 795 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 796 | 
         
            +
                    return self.model.embed_tokens
         
     | 
| 797 | 
         
            +
             
     | 
| 798 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 799 | 
         
            +
                    self.model.embed_tokens = value
         
     | 
| 800 | 
         
            +
             
     | 
| 801 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 802 | 
         
            +
                    return self.lm_head
         
     | 
| 803 | 
         
            +
             
     | 
| 804 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 805 | 
         
            +
                    self.lm_head = new_embeddings
         
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
                def set_decoder(self, decoder):
         
     | 
| 808 | 
         
            +
                    self.model = decoder
         
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
                def get_decoder(self):
         
     | 
| 811 | 
         
            +
                    return self.model
         
     | 
| 812 | 
         
            +
             
     | 
| 813 | 
         
            +
                @add_start_docstrings_to_model_forward(TRANSNORMER_INPUTS_DOCSTRING)
         
     | 
| 814 | 
         
            +
                @replace_return_docstrings(
         
     | 
| 815 | 
         
            +
                    output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
         
     | 
| 816 | 
         
            +
                )
         
     | 
| 817 | 
         
            +
                def forward(
         
     | 
| 818 | 
         
            +
                    self,
         
     | 
| 819 | 
         
            +
                    input_ids: torch.LongTensor = None,
         
     | 
| 820 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 821 | 
         
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 822 | 
         
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 823 | 
         
            +
                    labels: Optional[torch.LongTensor] = None,
         
     | 
| 824 | 
         
            +
                    use_cache: Optional[bool] = None,
         
     | 
| 825 | 
         
            +
                    output_attentions: Optional[bool] = None,
         
     | 
| 826 | 
         
            +
                    output_hidden_states: Optional[bool] = None,
         
     | 
| 827 | 
         
            +
                    return_dict: Optional[bool] = None,
         
     | 
| 828 | 
         
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         
     | 
| 829 | 
         
            +
                    r"""
         
     | 
| 830 | 
         
            +
                    Args:
         
     | 
| 831 | 
         
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         
     | 
| 832 | 
         
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         
     | 
| 833 | 
         
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         
     | 
| 834 | 
         
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                    Returns:
         
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                    Example:
         
     | 
| 839 | 
         
            +
             
     | 
| 840 | 
         
            +
                    ```python
         
     | 
| 841 | 
         
            +
                    >>> from transformers import AutoTokenizer, TransnormerForCausalLM
         
     | 
| 842 | 
         
            +
             
     | 
| 843 | 
         
            +
                    >>> model = TransnormerForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         
     | 
| 844 | 
         
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         
     | 
| 845 | 
         
            +
             
     | 
| 846 | 
         
            +
                    >>> prompt = "Hey, are you consciours? Can you talk to me?"
         
     | 
| 847 | 
         
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         
     | 
| 848 | 
         
            +
             
     | 
| 849 | 
         
            +
                    >>> # Generate
         
     | 
| 850 | 
         
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         
     | 
| 851 | 
         
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         
     | 
| 852 | 
         
            +
                    "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
         
     | 
| 853 | 
         
            +
                    ```"""
         
     | 
| 854 | 
         
            +
                    output_attentions = (
         
     | 
| 855 | 
         
            +
                        output_attentions
         
     | 
| 856 | 
         
            +
                        if output_attentions is not None
         
     | 
| 857 | 
         
            +
                        else self.config.output_attentions
         
     | 
| 858 | 
         
            +
                    )
         
     | 
| 859 | 
         
            +
                    output_hidden_states = (
         
     | 
| 860 | 
         
            +
                        output_hidden_states
         
     | 
| 861 | 
         
            +
                        if output_hidden_states is not None
         
     | 
| 862 | 
         
            +
                        else self.config.output_hidden_states
         
     | 
| 863 | 
         
            +
                    )
         
     | 
| 864 | 
         
            +
                    return_dict = (
         
     | 
| 865 | 
         
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 866 | 
         
            +
                    )
         
     | 
| 867 | 
         
            +
             
     | 
| 868 | 
         
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         
     | 
| 869 | 
         
            +
                    outputs = self.model(
         
     | 
| 870 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 871 | 
         
            +
                        attn_padding_mask=attention_mask,
         
     | 
| 872 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 873 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 874 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 875 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 876 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 877 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 878 | 
         
            +
                    )
         
     | 
| 879 | 
         
            +
             
     | 
| 880 | 
         
            +
                    hidden_states = outputs[0]
         
     | 
| 881 | 
         
            +
                    logits = self.lm_head(hidden_states)
         
     | 
| 882 | 
         
            +
             
     | 
| 883 | 
         
            +
                    loss = None
         
     | 
| 884 | 
         
            +
                    if labels is not None:
         
     | 
| 885 | 
         
            +
                        # Shift so that tokens < n predict n
         
     | 
| 886 | 
         
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         
     | 
| 887 | 
         
            +
                        shift_labels = labels[..., 1:].contiguous()
         
     | 
| 888 | 
         
            +
                        # Flatten the tokens
         
     | 
| 889 | 
         
            +
                        loss_fct = CrossEntropyLoss()
         
     | 
| 890 | 
         
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         
     | 
| 891 | 
         
            +
                        shift_labels = shift_labels.view(-1)
         
     | 
| 892 | 
         
            +
                        # Enable model parallelism
         
     | 
| 893 | 
         
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         
     | 
| 894 | 
         
            +
                        loss = loss_fct(shift_logits, shift_labels)
         
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
                    if not return_dict:
         
     | 
| 897 | 
         
            +
                        output = (logits,) + outputs[1:]
         
     | 
| 898 | 
         
            +
                        return (loss,) + output if loss is not None else output
         
     | 
| 899 | 
         
            +
             
     | 
| 900 | 
         
            +
                    return CausalLMOutputWithPast(
         
     | 
| 901 | 
         
            +
                        loss=loss,
         
     | 
| 902 | 
         
            +
                        logits=logits,
         
     | 
| 903 | 
         
            +
                        past_key_values=outputs.past_key_values,
         
     | 
| 904 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 905 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 906 | 
         
            +
                    )
         
     | 
| 907 | 
         
            +
             
     | 
| 908 | 
         
            +
                def prepare_inputs_for_generation(
         
     | 
| 909 | 
         
            +
                    self,
         
     | 
| 910 | 
         
            +
                    input_ids,
         
     | 
| 911 | 
         
            +
                    past_key_values=None,
         
     | 
| 912 | 
         
            +
                    attention_mask=None,
         
     | 
| 913 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 914 | 
         
            +
                    **kwargs,
         
     | 
| 915 | 
         
            +
                ):
         
     | 
| 916 | 
         
            +
                    if past_key_values:
         
     | 
| 917 | 
         
            +
                        input_ids = input_ids[:, -1:]
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         
     | 
| 920 | 
         
            +
                    if inputs_embeds is not None and past_key_values is None:
         
     | 
| 921 | 
         
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         
     | 
| 922 | 
         
            +
                    else:
         
     | 
| 923 | 
         
            +
                        model_inputs = {"input_ids": input_ids}
         
     | 
| 924 | 
         
            +
             
     | 
| 925 | 
         
            +
                    model_inputs.update(
         
     | 
| 926 | 
         
            +
                        {
         
     | 
| 927 | 
         
            +
                            "past_key_values": past_key_values,
         
     | 
| 928 | 
         
            +
                            "use_cache": kwargs.get("use_cache"),
         
     | 
| 929 | 
         
            +
                            "attention_mask": attention_mask,
         
     | 
| 930 | 
         
            +
                        }
         
     | 
| 931 | 
         
            +
                    )
         
     | 
| 932 | 
         
            +
                    return model_inputs
         
     | 
| 933 | 
         
            +
             
     | 
| 934 | 
         
            +
                @staticmethod
         
     | 
| 935 | 
         
            +
                def _reorder_cache(past_key_values, beam_idx):
         
     | 
| 936 | 
         
            +
                    reordered_past = ()
         
     | 
| 937 | 
         
            +
                    for layer_past in past_key_values:
         
     | 
| 938 | 
         
            +
                        reordered_past += (
         
     | 
| 939 | 
         
            +
                            tuple(
         
     | 
| 940 | 
         
            +
                                past_state.index_select(0, beam_idx) for past_state in layer_past
         
     | 
| 941 | 
         
            +
                            ),
         
     | 
| 942 | 
         
            +
                        )
         
     | 
| 943 | 
         
            +
                    return reordered_past
         
     | 
    	
        norm.py
    ADDED
    
    | 
         @@ -0,0 +1,44 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #    Copyright 2024 OpenNLPLab
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            #    you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            #    You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #    Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            #    See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            #    limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            # coding=utf-8
         
     | 
| 16 | 
         
            +
            import logging
         
     | 
| 17 | 
         
            +
            import os
         
     | 
| 18 | 
         
            +
            import sys
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            import torch
         
     | 
| 21 | 
         
            +
            from torch import nn
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            logging.basicConfig(
         
     | 
| 24 | 
         
            +
                format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
         
     | 
| 25 | 
         
            +
                datefmt="%Y-%m-%d %H:%M:%S",
         
     | 
| 26 | 
         
            +
                level=os.environ.get("LOGLEVEL", "INFO").upper(),
         
     | 
| 27 | 
         
            +
                stream=sys.stdout,
         
     | 
| 28 | 
         
            +
            )
         
     | 
| 29 | 
         
            +
            logger = logging.getLogger("srmsnorm")
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            class SimpleRMSNorm(nn.Module):
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                def __init__(self, dim: int, eps: float = 1e-6):
         
     | 
| 35 | 
         
            +
                    super().__init__()
         
     | 
| 36 | 
         
            +
                    self.eps = eps
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                def _norm(self, x):
         
     | 
| 39 | 
         
            +
                    return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                def forward(self, x):
         
     | 
| 42 | 
         
            +
                    output = self._norm(x.float()).type_as(x)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                    return output
         
     | 
    	
        srmsnorm_triton.py
    ADDED
    
    | 
         @@ -0,0 +1,202 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # CREDITS: This comes almost as-is from the Triton layer norm tutorial
         
     | 
| 2 | 
         
            +
            # https://github.com/openai/triton/blob/master/python/tutorials/05-layer-norm.py
         
     | 
| 3 | 
         
            +
            #    Copyright 2024 OpenNLPLab
         
     | 
| 4 | 
         
            +
            #
         
     | 
| 5 | 
         
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 6 | 
         
            +
            #    you may not use this file except in compliance with the License.
         
     | 
| 7 | 
         
            +
            #    You may obtain a copy of the License at
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 10 | 
         
            +
            #
         
     | 
| 11 | 
         
            +
            #    Unless required by applicable law or agreed to in writing, software
         
     | 
| 12 | 
         
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 13 | 
         
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 14 | 
         
            +
            #    See the License for the specific language governing permissions and
         
     | 
| 15 | 
         
            +
            #    limitations under the License.
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            # coding=utf-8
         
     | 
| 18 | 
         
            +
            import torch
         
     | 
| 19 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 20 | 
         
            +
            import triton
         
     | 
| 21 | 
         
            +
            import triton.language as tl
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            # fmt: off
         
     | 
| 25 | 
         
            +
            @triton.jit
         
     | 
| 26 | 
         
            +
            def srms_norm_fw(X, Y, V, stride, N, eps, BLOCK_SIZE_N: tl.constexpr):
         
     | 
| 27 | 
         
            +
                # fmt: on
         
     | 
| 28 | 
         
            +
                row = tl.program_id(0)
         
     | 
| 29 | 
         
            +
                cols = tl.arange(0, BLOCK_SIZE_N)
         
     | 
| 30 | 
         
            +
                mask = cols < N
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                # Move to this row
         
     | 
| 33 | 
         
            +
                x_ptrs = X + row * stride + cols
         
     | 
| 34 | 
         
            +
                x = tl.load(x_ptrs, mask=mask, other=0.0).to(tl.float32)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                x_zm = tl.where(mask, x, 0.0)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                x_var = tl.sum(x_zm * x_zm, axis=0) / N
         
     | 
| 39 | 
         
            +
                rstd = 1.0 / tl.sqrt(x_var + eps)
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                # Normalize, optionally affine
         
     | 
| 42 | 
         
            +
                y = x_zm * rstd
         
     | 
| 43 | 
         
            +
                tl.store(V + row, rstd)
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                y_ptrs = Y + row * stride + cols
         
     | 
| 46 | 
         
            +
                tl.store(y_ptrs, y, mask=mask)
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            # Backward pass (DX + partial DW + partial DB)
         
     | 
| 50 | 
         
            +
            # fmt: off
         
     | 
| 51 | 
         
            +
            @triton.jit
         
     | 
| 52 | 
         
            +
            def srms_norm_bwd_dx_fused(
         
     | 
| 53 | 
         
            +
                DX, DY,
         
     | 
| 54 | 
         
            +
                X, V,
         
     | 
| 55 | 
         
            +
                stride, N,
         
     | 
| 56 | 
         
            +
                # META-parameters
         
     | 
| 57 | 
         
            +
                BLOCK_SIZE_N: tl.constexpr,
         
     | 
| 58 | 
         
            +
            ):
         
     | 
| 59 | 
         
            +
                # fmt: on
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                # position of elements processed by this program
         
     | 
| 62 | 
         
            +
                row = tl.program_id(0)
         
     | 
| 63 | 
         
            +
                cols = tl.arange(0, BLOCK_SIZE_N)
         
     | 
| 64 | 
         
            +
                mask = cols < N
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                # offset data pointers to start at the row of interest
         
     | 
| 67 | 
         
            +
                x_ptrs = X + row * stride + cols
         
     | 
| 68 | 
         
            +
                dy_ptrs = DY + row * stride + cols
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                # load data to SRAM
         
     | 
| 71 | 
         
            +
                x = tl.load(x_ptrs, mask=mask, other=0)
         
     | 
| 72 | 
         
            +
                dy = tl.load(dy_ptrs, mask=mask, other=0)
         
     | 
| 73 | 
         
            +
                rstd = tl.load(V + row)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                # compute dx
         
     | 
| 76 | 
         
            +
                xhat = x * rstd
         
     | 
| 77 | 
         
            +
                wdy = dy
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                xhat = tl.where(mask, xhat, 0.)
         
     | 
| 80 | 
         
            +
                wdy = tl.where(mask, wdy, 0.)
         
     | 
| 81 | 
         
            +
                mean1 = tl.sum(xhat * wdy, axis=0) / N
         
     | 
| 82 | 
         
            +
                dx = (wdy - (xhat * mean1)) * rstd
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                # write-back dx
         
     | 
| 85 | 
         
            +
                mask = cols < N  # re-materialize the mask to save registers
         
     | 
| 86 | 
         
            +
                dx_ptrs = DX + row * stride + cols
         
     | 
| 87 | 
         
            +
                tl.store(dx_ptrs, dx, mask=mask)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            class _SrmsNorm(torch.autograd.Function):
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                @staticmethod
         
     | 
| 93 | 
         
            +
                def forward(ctx, x, eps):
         
     | 
| 94 | 
         
            +
                    # catch eps being too small if the tensors are fp16
         
     | 
| 95 | 
         
            +
                    if x.dtype == torch.float16:
         
     | 
| 96 | 
         
            +
                        eps = max(eps, 1.6e-5)
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    # allocate output
         
     | 
| 99 | 
         
            +
                    y = torch.empty_like(x)
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    # reshape input data into 2D tensor
         
     | 
| 102 | 
         
            +
                    x_arg = x.reshape(-1, x.shape[-1])
         
     | 
| 103 | 
         
            +
                    M, N = x_arg.shape
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    # allocate mean and std, they'll be used in the backward pass
         
     | 
| 106 | 
         
            +
                    rstd = torch.empty((M, ), dtype=torch.float32, device=x.device)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                    # Less than 64KB per feature: enqueue fused kernel
         
     | 
| 109 | 
         
            +
                    MAX_FUSED_SIZE = 65536 // x.element_size()
         
     | 
| 110 | 
         
            +
                    BLOCK_SIZE_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
         
     | 
| 111 | 
         
            +
                    if N > BLOCK_SIZE_N:
         
     | 
| 112 | 
         
            +
                        raise RuntimeError(
         
     | 
| 113 | 
         
            +
                            "This layer norm doesn't support feature dim >= 64KB.")
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    if not x_arg.is_contiguous() or not y.is_contiguous():
         
     | 
| 116 | 
         
            +
                        x_arg = x_arg.contiguous()
         
     | 
| 117 | 
         
            +
                        y = y.contiguous()
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    # heuristics for number of warps.
         
     | 
| 120 | 
         
            +
                    num_warps = min(max(BLOCK_SIZE_N // 256, 1), 16)
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    # enqueue kernel
         
     | 
| 123 | 
         
            +
                    # fmt: off
         
     | 
| 124 | 
         
            +
                    srms_norm_fw[(M,)](
         
     | 
| 125 | 
         
            +
                        x_arg, y, rstd,
         
     | 
| 126 | 
         
            +
                        x_arg.stride(0),
         
     | 
| 127 | 
         
            +
                        N,
         
     | 
| 128 | 
         
            +
                        eps,
         
     | 
| 129 | 
         
            +
                        num_warps=num_warps,
         
     | 
| 130 | 
         
            +
                        BLOCK_SIZE_N=BLOCK_SIZE_N,
         
     | 
| 131 | 
         
            +
                    )
         
     | 
| 132 | 
         
            +
                    # fmt: on
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    ctx.save_for_backward(x, rstd)
         
     | 
| 135 | 
         
            +
                    ctx.BLOCK_SIZE_N = BLOCK_SIZE_N
         
     | 
| 136 | 
         
            +
                    ctx.num_warps = num_warps
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    return y.reshape_as(x)
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                @staticmethod
         
     | 
| 141 | 
         
            +
                def backward(
         
     | 
| 142 | 
         
            +
                    ctx, dy
         
     | 
| 143 | 
         
            +
                ):  # pragma: no cover  # this is covered, but called directly from C++
         
     | 
| 144 | 
         
            +
                    x, rstd = ctx.saved_tensors
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    # flatten the batch dimension, if any.
         
     | 
| 147 | 
         
            +
                    # We're interested in 'samples' x norm_dimension
         
     | 
| 148 | 
         
            +
                    x = x.reshape(-1, x.size(-1))
         
     | 
| 149 | 
         
            +
                    M, N = x.size()
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    # heuristics for amount of parallel reduction stream for DG/DB
         
     | 
| 152 | 
         
            +
                    GROUP_SIZE_M = 32
         
     | 
| 153 | 
         
            +
                    if N <= 8192:
         
     | 
| 154 | 
         
            +
                        GROUP_SIZE_M = 64
         
     | 
| 155 | 
         
            +
                    if N <= 4096:
         
     | 
| 156 | 
         
            +
                        GROUP_SIZE_M = 96
         
     | 
| 157 | 
         
            +
                    if N <= 2048:
         
     | 
| 158 | 
         
            +
                        GROUP_SIZE_M = 128
         
     | 
| 159 | 
         
            +
                    if N <= 1024:
         
     | 
| 160 | 
         
            +
                        GROUP_SIZE_M = 256
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    if dy.dtype == torch.float32:
         
     | 
| 163 | 
         
            +
                        GROUP_SIZE_M = GROUP_SIZE_M // 2
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    # allocate output
         
     | 
| 166 | 
         
            +
                    dy = dy.contiguous()
         
     | 
| 167 | 
         
            +
                    dx = torch.empty_like(dy)
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    # Check the tensor shapes and layouts
         
     | 
| 170 | 
         
            +
                    # we suppose in the kernel that they have the same size and are contiguous
         
     | 
| 171 | 
         
            +
                    assert (
         
     | 
| 172 | 
         
            +
                        dy.numel() == x.numel()
         
     | 
| 173 | 
         
            +
                    ), "Something is wrong in the backward graph, possibly because of an inplace operation after the layernorm"
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    # enqueue kernel using forward pass heuristics
         
     | 
| 176 | 
         
            +
                    # also compute partial sums for DW and DB
         
     | 
| 177 | 
         
            +
                    num_warps = min(max(ctx.BLOCK_SIZE_N // 256, 1), 16)
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                    # fmt: off
         
     | 
| 180 | 
         
            +
                    srms_norm_bwd_dx_fused[(M,)](
         
     | 
| 181 | 
         
            +
                        dx, dy, x,
         
     | 
| 182 | 
         
            +
                        rstd,
         
     | 
| 183 | 
         
            +
                        x.stride(0),
         
     | 
| 184 | 
         
            +
                        N,
         
     | 
| 185 | 
         
            +
                        BLOCK_SIZE_N=ctx.BLOCK_SIZE_N,
         
     | 
| 186 | 
         
            +
                        num_warps=num_warps
         
     | 
| 187 | 
         
            +
                    )
         
     | 
| 188 | 
         
            +
                    # fmt: on
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                    dx = dx.reshape_as(dy)
         
     | 
| 191 | 
         
            +
                    return dx, None, None
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
            class SimpleRMSNorm(torch.nn.Module):
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                def __init__(self, dim: int, eps: float = 1e-6):
         
     | 
| 197 | 
         
            +
                    super().__init__()
         
     | 
| 198 | 
         
            +
                    self.eps = eps
         
     | 
| 199 | 
         
            +
                    self.dim = dim
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                def forward(self, x):
         
     | 
| 202 | 
         
            +
                    return _SrmsNorm.apply(x, self.eps)
         
     | 
    	
        tokenization_transnormerllm.py
    ADDED
    
    | 
         @@ -0,0 +1,240 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # CREDITS: tiktoken @openai
         
     | 
| 2 | 
         
            +
            # https://github.com/openai/tiktoken
         
     | 
| 3 | 
         
            +
            #
         
     | 
| 4 | 
         
            +
            #    Copyright 2024 OpenNLPLab
         
     | 
| 5 | 
         
            +
            #
         
     | 
| 6 | 
         
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 7 | 
         
            +
            #    you may not use this file except in compliance with the License.
         
     | 
| 8 | 
         
            +
            #    You may obtain a copy of the License at
         
     | 
| 9 | 
         
            +
            #
         
     | 
| 10 | 
         
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 11 | 
         
            +
            #
         
     | 
| 12 | 
         
            +
            #    Unless required by applicable law or agreed to in writing, software
         
     | 
| 13 | 
         
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 14 | 
         
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 15 | 
         
            +
            #    See the License for the specific language governing permissions and
         
     | 
| 16 | 
         
            +
            #    limitations under the License.
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            # coding=utf-8
         
     | 
| 19 | 
         
            +
            import base64
         
     | 
| 20 | 
         
            +
            import logging
         
     | 
| 21 | 
         
            +
            import os
         
     | 
| 22 | 
         
            +
            from typing import Collection, Dict, List, Set, Tuple, Union
         
     | 
| 23 | 
         
            +
            import unicodedata
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            import tiktoken
         
     | 
| 26 | 
         
            +
            from transformers import AddedToken, AutoTokenizer, PreTrainedTokenizer
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            VOCAB_FILES_NAMES = {"vocab_file": "transnormer_100k.tiktoken"}
         
     | 
| 32 | 
         
            +
            PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
         
     | 
| 33 | 
         
            +
            SPECIAL_TOKENS_DICT = {'<|endoftext|>': 100257, '<|fim_prefix|>': 100258, '<|fim_middle|>': 100259, '<|fim_suffix|>': 100260, '<|endofprompt|>': 100276, '<|J2PM|>': 100256, '<s>': 100261, '<pad>': 100262, '<unk>': 100263, '<mask>': 100264}
         
     | 
| 34 | 
         
            +
            SPECIAL_TOKENS_SET = set(SPECIAL_TOKENS_DICT.keys())
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            # as the default behavior is changed to allow special tokens in
         
     | 
| 37 | 
         
            +
            # regular texts, the surface forms of special tokens need to be
         
     | 
| 38 | 
         
            +
            # as different as possible to minimize the impact
         
     | 
| 39 | 
         
            +
            # changed to use actual index to avoid misconfiguration with vocabulary expansion
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
         
     | 
| 42 | 
         
            +
                with open(tiktoken_bpe_file, "rb") as f:
         
     | 
| 43 | 
         
            +
                    contents = f.read()
         
     | 
| 44 | 
         
            +
                return {
         
     | 
| 45 | 
         
            +
                    base64.b64decode(token): int(rank)
         
     | 
| 46 | 
         
            +
                    for token, rank in (line.split() for line in contents.splitlines() if line)
         
     | 
| 47 | 
         
            +
                }
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            class GPT4Tokenizer(PreTrainedTokenizer):
         
     | 
| 51 | 
         
            +
                vocab_files_names = VOCAB_FILES_NAMES
         
     | 
| 52 | 
         
            +
                def __init__(
         
     | 
| 53 | 
         
            +
                    self,
         
     | 
| 54 | 
         
            +
                    vocab_file,
         
     | 
| 55 | 
         
            +
                    errors="replace",
         
     | 
| 56 | 
         
            +
                    extra_vocab_file=None,
         
     | 
| 57 | 
         
            +
                    **kwargs,
         
     | 
| 58 | 
         
            +
                ):
         
     | 
| 59 | 
         
            +
                    super().__init__(**kwargs)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    # how to handle errors in decoding UTF-8 byte sequences
         
     | 
| 62 | 
         
            +
                    # use ignore if you are in streaming inference
         
     | 
| 63 | 
         
            +
                    self.errors = errors  
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                    self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)  # type: Dict[bytes, int]
         
     | 
| 66 | 
         
            +
                    self.special_tokens = SPECIAL_TOKENS_DICT
         
     | 
| 67 | 
         
            +
             
         
     | 
| 68 | 
         
            +
                    enc = tiktoken.Encoding(
         
     | 
| 69 | 
         
            +
                        "transnormer_100k",
         
     | 
| 70 | 
         
            +
                        pat_str=PAT_STR,
         
     | 
| 71 | 
         
            +
                        mergeable_ranks=self.mergeable_ranks,
         
     | 
| 72 | 
         
            +
                        special_tokens=self.special_tokens,
         
     | 
| 73 | 
         
            +
                    )
         
     | 
| 74 | 
         
            +
                    self.decoder = {
         
     | 
| 75 | 
         
            +
                        v: k for k, v in self.mergeable_ranks.items()
         
     | 
| 76 | 
         
            +
                    }  # type: dict[int, bytes|str]
         
     | 
| 77 | 
         
            +
                    self.decoder.update({v: k for k, v in self.special_tokens.items()})
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    self.tokenizer = enc  # type: tiktoken.Encoding
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    self.eod_id = self.tokenizer.eot_token
         
     | 
| 82 | 
         
            +
                    self.pad_token_id = 100262
         
     | 
| 83 | 
         
            +
                    self.bos_token_id = 100261
         
     | 
| 84 | 
         
            +
                    self.eos_token_id = self.eod_id
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                def __getstate__(self):
         
     | 
| 87 | 
         
            +
                    # for pickle lovers
         
     | 
| 88 | 
         
            +
                    state = self.__dict__.copy()
         
     | 
| 89 | 
         
            +
                    del state["tokenizer"]
         
     | 
| 90 | 
         
            +
                    return state
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                def __setstate__(self, state):
         
     | 
| 93 | 
         
            +
                    # tokenizer is not python native; don't pass it; rebuild it
         
     | 
| 94 | 
         
            +
                    self.__dict__.update(state)
         
     | 
| 95 | 
         
            +
                    enc = tiktoken.Encoding(
         
     | 
| 96 | 
         
            +
                        "transnormer_100k",
         
     | 
| 97 | 
         
            +
                        pat_str=PAT_STR,
         
     | 
| 98 | 
         
            +
                        mergeable_ranks=self.mergeable_ranks,
         
     | 
| 99 | 
         
            +
                        special_tokens=self.special_tokens,
         
     | 
| 100 | 
         
            +
                    )
         
     | 
| 101 | 
         
            +
                    self.tokenizer = enc
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                def __len__(self) -> int:
         
     | 
| 104 | 
         
            +
                    return self.tokenizer.n_vocab
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                def get_vocab(self) -> Dict[bytes, int]:
         
     | 
| 107 | 
         
            +
                    return self.mergeable_ranks
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                def convert_tokens_to_ids(
         
     | 
| 110 | 
         
            +
                    self, tokens: Union[bytes, str, List[Union[bytes, str]]]
         
     | 
| 111 | 
         
            +
                ) -> List[int]:
         
     | 
| 112 | 
         
            +
                    ids = []
         
     | 
| 113 | 
         
            +
                    if isinstance(tokens, (str, bytes)):
         
     | 
| 114 | 
         
            +
                        if tokens in self.special_tokens:
         
     | 
| 115 | 
         
            +
                            return self.special_tokens[tokens]
         
     | 
| 116 | 
         
            +
                        else:
         
     | 
| 117 | 
         
            +
                            return self.mergeable_ranks.get(tokens)
         
     | 
| 118 | 
         
            +
                    for token in tokens:
         
     | 
| 119 | 
         
            +
                        if token in self.special_tokens:
         
     | 
| 120 | 
         
            +
                            ids.append(self.special_tokens[token])
         
     | 
| 121 | 
         
            +
                        else:
         
     | 
| 122 | 
         
            +
                            ids.append(self.mergeable_ranks.get(token))
         
     | 
| 123 | 
         
            +
                    return ids
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                def _add_tokens(
         
     | 
| 126 | 
         
            +
                    self,
         
     | 
| 127 | 
         
            +
                    new_tokens: Union[List[str], List[AddedToken]],
         
     | 
| 128 | 
         
            +
                    special_tokens: bool = False,
         
     | 
| 129 | 
         
            +
                ) -> int:
         
     | 
| 130 | 
         
            +
                    if not special_tokens and new_tokens:
         
     | 
| 131 | 
         
            +
                        raise ValueError("Adding regular tokens is not supported")
         
     | 
| 132 | 
         
            +
                    for token in new_tokens:
         
     | 
| 133 | 
         
            +
                        surface_form = token.content if isinstance(token, AddedToken) else token
         
     | 
| 134 | 
         
            +
                        if surface_form not in SPECIAL_TOKENS_SET:
         
     | 
| 135 | 
         
            +
                            raise ValueError("Adding unknown special tokens is not supported")
         
     | 
| 136 | 
         
            +
                    return 0
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
         
     | 
| 139 | 
         
            +
                    """
         
     | 
| 140 | 
         
            +
                    Save only the vocabulary of the tokenizer (vocabulary).
         
     | 
| 141 | 
         
            +
                    Returns:
         
     | 
| 142 | 
         
            +
                        `Tuple(str)`: Paths to the files saved.
         
     | 
| 143 | 
         
            +
                    """
         
     | 
| 144 | 
         
            +
                    file_path = os.path.join(save_directory, "transnormer_100k.tiktoken")
         
     | 
| 145 | 
         
            +
                    with open(file_path, "w", encoding="utf8") as w:
         
     | 
| 146 | 
         
            +
                        for k, v in self.mergeable_ranks.items():
         
     | 
| 147 | 
         
            +
                            line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
         
     | 
| 148 | 
         
            +
                            w.write(line)
         
     | 
| 149 | 
         
            +
                    return (file_path,)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                def tokenize(
         
     | 
| 152 | 
         
            +
                    self,
         
     | 
| 153 | 
         
            +
                    text: str,
         
     | 
| 154 | 
         
            +
                    allowed_special: Union[Set, str] = "all",
         
     | 
| 155 | 
         
            +
                    disallowed_special: Union[Collection, str] = (),
         
     | 
| 156 | 
         
            +
                    **kwargs,
         
     | 
| 157 | 
         
            +
                ) -> List[Union[bytes, str]]:
         
     | 
| 158 | 
         
            +
                    """
         
     | 
| 159 | 
         
            +
                    Converts a string in a sequence of tokens.
         
     | 
| 160 | 
         
            +
                    Args:
         
     | 
| 161 | 
         
            +
                        text (`str`):
         
     | 
| 162 | 
         
            +
                            The sequence to be encoded.
         
     | 
| 163 | 
         
            +
                        allowed_special (`Literal["all"]` or `set`):
         
     | 
| 164 | 
         
            +
                            The surface forms of the tokens to be encoded as special tokens in regular texts.
         
     | 
| 165 | 
         
            +
                            Default to "all".
         
     | 
| 166 | 
         
            +
                        disallowed_special (`Literal["all"]` or `Collection`):
         
     | 
| 167 | 
         
            +
                            The surface forms of the tokens that should not be in regular texts and trigger errors.
         
     | 
| 168 | 
         
            +
                            Default to an empty tuple.
         
     | 
| 169 | 
         
            +
                        kwargs (additional keyword arguments, *optional*):
         
     | 
| 170 | 
         
            +
                            Will be passed to the underlying model specific encode method.
         
     | 
| 171 | 
         
            +
                    Returns:
         
     | 
| 172 | 
         
            +
                        `List[bytes|str]`: The list of tokens.
         
     | 
| 173 | 
         
            +
                    """
         
     | 
| 174 | 
         
            +
                    tokens = []
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                    # this implementation takes a detour: text -> token id -> token surface forms
         
     | 
| 177 | 
         
            +
                    for t in self.tokenizer.encode(
         
     | 
| 178 | 
         
            +
                        text, allowed_special=allowed_special, disallowed_special=disallowed_special
         
     | 
| 179 | 
         
            +
                    ):
         
     | 
| 180 | 
         
            +
                        tokens.append(self.decoder[t])
         
     | 
| 181 | 
         
            +
                    return tokens
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
         
     | 
| 184 | 
         
            +
                    """
         
     | 
| 185 | 
         
            +
                    Converts a sequence of tokens in a single string.
         
     | 
| 186 | 
         
            +
                    """
         
     | 
| 187 | 
         
            +
                    text = ""
         
     | 
| 188 | 
         
            +
                    temp = b""
         
     | 
| 189 | 
         
            +
                    for t in tokens:
         
     | 
| 190 | 
         
            +
                        if isinstance(t, str):
         
     | 
| 191 | 
         
            +
                            if temp:
         
     | 
| 192 | 
         
            +
                                text += temp.decode("utf-8", errors=self.errors)
         
     | 
| 193 | 
         
            +
                                temp = b""
         
     | 
| 194 | 
         
            +
                            text += t
         
     | 
| 195 | 
         
            +
                        elif isinstance(t, bytes):
         
     | 
| 196 | 
         
            +
                            temp += t
         
     | 
| 197 | 
         
            +
                        else:
         
     | 
| 198 | 
         
            +
                            raise TypeError("token should only be of type types or str")
         
     | 
| 199 | 
         
            +
                    if temp:
         
     | 
| 200 | 
         
            +
                        text += temp.decode("utf-8", errors=self.errors)
         
     | 
| 201 | 
         
            +
                    return text
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                @property
         
     | 
| 204 | 
         
            +
                def vocab_size(self):
         
     | 
| 205 | 
         
            +
                    return self.tokenizer.n_vocab
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
         
     | 
| 208 | 
         
            +
                    """Converts an id to a token, special tokens included"""
         
     | 
| 209 | 
         
            +
                    if index in self.decoder:
         
     | 
| 210 | 
         
            +
                        return self.decoder[index]
         
     | 
| 211 | 
         
            +
                    raise ValueError("unknown ids")
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
         
     | 
| 214 | 
         
            +
                    """Converts a token to an id using the vocab, special tokens included"""
         
     | 
| 215 | 
         
            +
                    if token in self.special_tokens:
         
     | 
| 216 | 
         
            +
                        return self.special_tokens[token]
         
     | 
| 217 | 
         
            +
                    if token in self.mergeable_ranks:
         
     | 
| 218 | 
         
            +
                        return self.mergeable_ranks[token]
         
     | 
| 219 | 
         
            +
                    raise ValueError("unknown token")
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                def _tokenize(self, text: str, **kwargs):
         
     | 
| 222 | 
         
            +
                    """
         
     | 
| 223 | 
         
            +
                    Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
         
     | 
| 224 | 
         
            +
                    vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
         
     | 
| 225 | 
         
            +
                    Do NOT take care of added tokens.
         
     | 
| 226 | 
         
            +
                    """
         
     | 
| 227 | 
         
            +
                    raise NotImplementedError
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                def _decode(
         
     | 
| 230 | 
         
            +
                    self,
         
     | 
| 231 | 
         
            +
                    token_ids: Union[int, List[int]],
         
     | 
| 232 | 
         
            +
                    skip_special_tokens: bool = False,
         
     | 
| 233 | 
         
            +
                    errors: str = None,
         
     | 
| 234 | 
         
            +
                    **kwargs,
         
     | 
| 235 | 
         
            +
                ) -> str:
         
     | 
| 236 | 
         
            +
                    if isinstance(token_ids, int):
         
     | 
| 237 | 
         
            +
                        token_ids = [token_ids]
         
     | 
| 238 | 
         
            +
                    if skip_special_tokens:
         
     | 
| 239 | 
         
            +
                        token_ids = [i for i in token_ids if i < self.eod_id]
         
     | 
| 240 | 
         
            +
                    return self.tokenizer.decode(token_ids, errors=errors or self.errors)
         
     | 
    	
        tokenizer_config.json
    ADDED
    
    | 
         @@ -0,0 +1,10 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "model_max_length": 65536,
         
     | 
| 3 | 
         
            +
              "tokenizer_class": "GPT4Tokenizer",
         
     | 
| 4 | 
         
            +
              "auto_map": {
         
     | 
| 5 | 
         
            +
                "AutoTokenizer": [
         
     | 
| 6 | 
         
            +
                  "tokenization_transnormerllm.GPT4Tokenizer",
         
     | 
| 7 | 
         
            +
                  null
         
     | 
| 8 | 
         
            +
                ]
         
     | 
| 9 | 
         
            +
              }
         
     | 
| 10 | 
         
            +
            }
         
     | 
    	
        transnormer_100k.tiktoken
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        utils.py
    ADDED
    
    | 
         @@ -0,0 +1,166 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #    Copyright 2024 OpenNLPLab
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            #    Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            #    you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            #    You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #        http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            #    Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            #    distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            #    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            #    See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            #    limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            # coding=utf-8
         
     | 
| 16 | 
         
            +
            import logging
         
     | 
| 17 | 
         
            +
            import os
         
     | 
| 18 | 
         
            +
            import sys
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            import torch
         
     | 
| 21 | 
         
            +
            from torch import nn
         
     | 
| 22 | 
         
            +
            import torch.distributed as dist
         
     | 
| 23 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            from .norm import SimpleRMSNorm as SimpleRMSNormTorch
         
     | 
| 26 | 
         
            +
            from .srmsnorm_triton import SimpleRMSNorm as SimpleRMSNormTriton
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            use_triton = eval(os.environ.get("use_triton", default="True"))
         
     | 
| 29 | 
         
            +
            debug = eval(os.environ.get("debug", default="False"))
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            if use_triton:
         
     | 
| 32 | 
         
            +
                SimpleRMSNorm = SimpleRMSNormTriton
         
     | 
| 33 | 
         
            +
            else:
         
     | 
| 34 | 
         
            +
                SimpleRMSNorm = SimpleRMSNormTorch
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            logging.basicConfig(
         
     | 
| 37 | 
         
            +
                format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
         
     | 
| 38 | 
         
            +
                datefmt="%Y-%m-%d %H:%M:%S",
         
     | 
| 39 | 
         
            +
                level=os.environ.get("LOGLEVEL", "INFO").upper(),
         
     | 
| 40 | 
         
            +
                stream=sys.stdout,
         
     | 
| 41 | 
         
            +
            )
         
     | 
| 42 | 
         
            +
            logger = logging.getLogger("print_config")
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            BASE_DIM = 256
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            def is_dist_avail_and_initialized():
         
     | 
| 48 | 
         
            +
                if not dist.is_available():
         
     | 
| 49 | 
         
            +
                    return False
         
     | 
| 50 | 
         
            +
                if not dist.is_initialized():
         
     | 
| 51 | 
         
            +
                    return False
         
     | 
| 52 | 
         
            +
                return True
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            def get_world_size():
         
     | 
| 56 | 
         
            +
                if not is_dist_avail_and_initialized():
         
     | 
| 57 | 
         
            +
                    return 1
         
     | 
| 58 | 
         
            +
                return dist.get_world_size()
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            def get_rank():
         
     | 
| 62 | 
         
            +
                if not is_dist_avail_and_initialized():
         
     | 
| 63 | 
         
            +
                    return 0
         
     | 
| 64 | 
         
            +
                return dist.get_rank()
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            def is_main_process():
         
     | 
| 68 | 
         
            +
                return get_rank() == 0
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            def logging_info(string):
         
     | 
| 72 | 
         
            +
                if is_main_process():
         
     | 
| 73 | 
         
            +
                    logger.info(string)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            def print_params(**kwargs):
         
     | 
| 77 | 
         
            +
                if is_main_process():
         
     | 
| 78 | 
         
            +
                    logger.info(f"start print config of {kwargs['__class__']}")
         
     | 
| 79 | 
         
            +
                    for key in kwargs:
         
     | 
| 80 | 
         
            +
                        if key in ["__class__", "self"]:
         
     | 
| 81 | 
         
            +
                            continue
         
     | 
| 82 | 
         
            +
                        logger.info(f"{key}: {kwargs[key]}")
         
     | 
| 83 | 
         
            +
                    logger.info(f"end print config of {kwargs['__class__']}")
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            def print_config(config):
         
     | 
| 87 | 
         
            +
                if is_main_process():
         
     | 
| 88 | 
         
            +
                    logger.info(f"start print config of {config['__class__']}")
         
     | 
| 89 | 
         
            +
                    for key in config:
         
     | 
| 90 | 
         
            +
                        if key in ["__class__", "self"]:
         
     | 
| 91 | 
         
            +
                            continue
         
     | 
| 92 | 
         
            +
                        logger.info(f"{key}: {config[key]}")
         
     | 
| 93 | 
         
            +
                    logger.info(f"end print config of {config['__class__']}")
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
            def print_module(module):
         
     | 
| 97 | 
         
            +
                named_modules = set()
         
     | 
| 98 | 
         
            +
                for p in module.named_modules():
         
     | 
| 99 | 
         
            +
                    named_modules.update([p[0]])
         
     | 
| 100 | 
         
            +
                named_modules = list(named_modules)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                string_repr = ""
         
     | 
| 103 | 
         
            +
                for p in module.named_parameters():
         
     | 
| 104 | 
         
            +
                    name = p[0].split(".")[0]
         
     | 
| 105 | 
         
            +
                    if name not in named_modules:
         
     | 
| 106 | 
         
            +
                        string_repr = (string_repr + "(" + name + "): " + "Tensor(" +
         
     | 
| 107 | 
         
            +
                                       str(tuple(p[1].shape)) + ", requires_grad=" +
         
     | 
| 108 | 
         
            +
                                       str(p[1].requires_grad) + ")\n")
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                return string_repr.rstrip("\n")
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            def get_activation_fn(activation):
         
     | 
| 114 | 
         
            +
                if debug:
         
     | 
| 115 | 
         
            +
                    logger.info(f"activation: {activation}")
         
     | 
| 116 | 
         
            +
                if activation == "gelu":
         
     | 
| 117 | 
         
            +
                    return F.gelu
         
     | 
| 118 | 
         
            +
                elif activation == "relu":
         
     | 
| 119 | 
         
            +
                    return F.relu
         
     | 
| 120 | 
         
            +
                elif activation == "elu":
         
     | 
| 121 | 
         
            +
                    return F.elu
         
     | 
| 122 | 
         
            +
                elif activation == "sigmoid":
         
     | 
| 123 | 
         
            +
                    return F.sigmoid
         
     | 
| 124 | 
         
            +
                elif activation == "exp":
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    def f(x):
         
     | 
| 127 | 
         
            +
                        with torch.no_grad():
         
     | 
| 128 | 
         
            +
                            x_max = torch.max(x, dim=-1, keepdims=True).values
         
     | 
| 129 | 
         
            +
                        y = torch.exp(x - x_max)
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                        return y
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    return f
         
     | 
| 134 | 
         
            +
                elif activation == "leak":
         
     | 
| 135 | 
         
            +
                    return F.leaky_relu
         
     | 
| 136 | 
         
            +
                elif activation == "1+elu":
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    def f(x):
         
     | 
| 139 | 
         
            +
                        return 1 + F.elu(x)
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    return f
         
     | 
| 142 | 
         
            +
                elif activation == "2+elu":
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                    def f(x):
         
     | 
| 145 | 
         
            +
                        return 2 + F.elu(x)
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                    return f
         
     | 
| 148 | 
         
            +
                elif activation == "silu" or activation == "swish":
         
     | 
| 149 | 
         
            +
                    return F.silu
         
     | 
| 150 | 
         
            +
                elif activation == "sine":
         
     | 
| 151 | 
         
            +
                    return torch.sin
         
     | 
| 152 | 
         
            +
                else:
         
     | 
| 153 | 
         
            +
                    logger.info(
         
     | 
| 154 | 
         
            +
                        f"activation: does not support {activation}, use Identity!!!")
         
     | 
| 155 | 
         
            +
                    return lambda x: x
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
            def get_norm_fn(norm_type):
         
     | 
| 159 | 
         
            +
                if norm_type == "simplermsnorm":
         
     | 
| 160 | 
         
            +
                    return SimpleRMSNorm
         
     | 
| 161 | 
         
            +
                else:
         
     | 
| 162 | 
         
            +
                    return nn.LayerNorm
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            def convert_to_multiple_of_base(x):
         
     | 
| 166 | 
         
            +
                return BASE_DIM * ((x + BASE_DIM - 1) // BASE_DIM)
         
     |