File size: 6,632 Bytes
e2150b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
(* ::Package:: *)
(* MathUtils.wl - Mathematical Utility Functions for ChaosSim *)
(* Reusable functions for Bernoulli numbers, Fibonacci sequences, and game theory *)
BeginPackage["MathUtils`"]
(* ::Section:: *)
(* Public Function Declarations *)
BernoulliChaosWeight::usage = "BernoulliChaosWeight[n] returns the absolute value of the nth Bernoulli number for chaos weighting."
GenerateFibonacciSequence::usage = "GenerateFibonacciSequence[n] generates the first n Fibonacci numbers."
GoldenRatioApproximation::usage = "GoldenRatioApproximation[n] calculates the golden ratio using the nth Fibonacci number."
PayoffMatrixRandom::usage = "PayoffMatrixRandom[rows, cols] generates a random payoff matrix for game theory."
NormalizeWeights::usage = "NormalizeWeights[list] normalizes a list to sum to 1."
ChaosEntropy::usage = "ChaosEntropy[data] calculates the Shannon entropy of chaos data."
LyapunovExponent::usage = "LyapunovExponent[data] estimates the Lyapunov exponent from a time series."
Begin["`Private`"]
(* ::Section:: *)
(* Bernoulli Number Utilities *)
BernoulliChaosWeight[n_Integer] := Module[{b},
If[n < 0,
Return[0.001],
b = BernoulliB[n];
If[b == 0, 0.001, Abs[N[b]]]
]
]
(* Generate Bernoulli polynomial *)
BernoulliPolynomialValue[n_Integer, x_Numeric] := BernoulliB[n, x]
(* Weighted sum using Bernoulli numbers *)
BernoulliWeightedSum[values_List, maxOrder_Integer: 10] := Module[
{weights, normalized},
weights = Table[BernoulliChaosWeight[i], {i, 1, Min[maxOrder, Length[values]]}];
normalized = weights / Total[weights];
Total[Take[values, Length[normalized]] * normalized]
]
(* ::Section:: *)
(* Fibonacci Utilities *)
GenerateFibonacciSequence[n_Integer] := Table[Fibonacci[i], {i, 1, n}]
GoldenRatioApproximation[n_Integer] := Module[{fn, fnMinus1},
If[n < 2, Return[1.0]];
fn = Fibonacci[n];
fnMinus1 = Fibonacci[n - 1];
N[fn / fnMinus1]
]
(* Generate Lucas numbers (related to Fibonacci) *)
GenerateLucasSequence[n_Integer] := Table[LucasL[i], {i, 1, n}]
(* Fibonacci-based golden spiral parameters *)
FibonacciSpiralRadius[n_Integer] := Sqrt[Fibonacci[n]]
(* Calculate Fibonacci ratios for chaos analysis *)
FibonacciRatioSequence[depth_Integer] := Module[{fibs, ratios},
fibs = GenerateFibonacciSequence[depth];
ratios = Table[N[fibs[[i + 1]] / fibs[[i]]], {i, 1, depth - 1}];
ratios
]
(* ::Section:: *)
(* Game Theory Utilities *)
PayoffMatrixRandom[rows_Integer, cols_Integer, range_List: {-10, 10}] :=
RandomInteger[range, {rows, cols}]
(* Check if a strategy profile is a Nash equilibrium *)
IsNashEquilibrium[strategy_List, payoffMatrix1_List, payoffMatrix2_List] := Module[
{i, j, isEquilibrium},
{i, j} = strategy;
isEquilibrium = True;
(* Check if player 1 can improve *)
If[Max[payoffMatrix1[[All, j]]] > payoffMatrix1[[i, j]],
isEquilibrium = False
];
(* Check if player 2 can improve *)
If[Max[payoffMatrix2[[i, All]]] > payoffMatrix2[[i, j]],
isEquilibrium = False
];
isEquilibrium
]
(* Calculate expected payoff for mixed strategy *)
ExpectedPayoff[strategy1_List, strategy2_List, payoffMatrix_List] :=
Sum[
strategy1[[i]] * strategy2[[j]] * payoffMatrix[[i, j]],
{i, 1, Length[strategy1]},
{j, 1, Length[strategy2]}
]
(* Generate symmetric game payoff matrix *)
SymmetricPayoffMatrix[size_Integer] := Module[{matrix},
matrix = PayoffMatrixRandom[size, size];
(matrix + Transpose[matrix]) / 2
]
(* ::Section:: *)
(* General Chaos Analysis Utilities *)
NormalizeWeights[list_List] := Module[{total},
total = Total[list];
If[total == 0, Table[1/Length[list], Length[list]], list / total]
]
(* Calculate Shannon entropy *)
ChaosEntropy[data_List] := Module[{probs, bins, counts},
bins = 20;
counts = BinCounts[data, {Min[data], Max[data], (Max[data] - Min[data])/bins}];
probs = NormalizeWeights[counts + 0.0001]; (* Add small value to avoid log(0) *)
-Total[probs * Log[2, probs]]
]
(* Estimate Lyapunov exponent from time series *)
LyapunovExponent[data_List, delay_Integer: 1] := Module[
{diffs, nonZeroDiffs, lyapunov},
If[Length[data] < delay + 2, Return[0.0]];
diffs = Abs[Differences[data, 1, delay]];
nonZeroDiffs = Select[diffs, # > 0.00001 &];
If[Length[nonZeroDiffs] < 2,
Return[0.0],
lyapunov = Mean[Log[nonZeroDiffs]]
];
lyapunov
]
(* Calculate correlation dimension *)
CorrelationDimension[data_List, epsilon_Real: 0.1] := Module[
{distances, correlationSum},
distances = Flatten[DistanceMatrix[Partition[data, 1]]];
correlationSum = Count[distances, x_ /; x < epsilon && x > 0];
If[correlationSum > 0,
Log[correlationSum] / Log[epsilon],
0.0
]
]
(* Detect periodic orbits in chaos data *)
DetectPeriodicOrbit[data_List, tolerance_Real: 0.01] := Module[
{n, periods, found},
n = Length[data];
found = False;
periods = {};
Do[
If[Abs[data[[i]] - data[[1]]] < tolerance && i > 1,
AppendTo[periods, i - 1];
found = True
],
{i, 2, Min[n, 100]}
];
If[found, First[periods], 0]
]
(* Calculate Hurst exponent for long-range dependence *)
HurstExponent[data_List] := Module[{n, mean, std, ranges, scaledRanges},
n = Length[data];
mean = Mean[data];
std = StandardDeviation[data];
If[std == 0, Return[0.5]];
ranges = Table[
Max[Accumulate[Take[data, k] - mean]] - Min[Accumulate[Take[data, k] - mean]],
{k, 10, n, Max[1, Floor[n/20]]}
];
scaledRanges = ranges / (std * Sqrt[Range[10, n, Max[1, Floor[n/20]]]]);
(* Fit log-log plot to estimate Hurst exponent *)
If[Length[scaledRanges] > 2,
Fit[
Transpose[{Log[Range[10, n, Max[1, Floor[n/20]]]], Log[scaledRanges]}],
{1, x}, x
][[2]],
0.5
]
]
(* ::Section:: *)
(* Chaos Metrics and Analysis *)
ChaoticityScore[data_List] := Module[
{entropy, lyapunov, hurst, score},
entropy = ChaosEntropy[data];
lyapunov = Abs[LyapunovExponent[data]];
hurst = Abs[HurstExponent[data] - 0.5];
(* Weighted combination *)
score = 0.4 * entropy + 0.4 * lyapunov + 0.2 * hurst;
score
]
(* Compare two chaos sequences *)
ChaosDistance[data1_List, data2_List] := Module[{minLen},
minLen = Min[Length[data1], Length[data2]];
EuclideanDistance[Take[data1, minLen], Take[data2, minLen]]
]
End[]
EndPackage[]
Print["MathUtils package loaded successfully."]
|