Update MODEL_CARD.md
Browse files- MODEL_CARD.md +173 -158
MODEL_CARD.md
CHANGED
|
@@ -1,159 +1,174 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
-
|
| 22 |
-
-
|
| 23 |
-
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
-
|
| 46 |
-
-
|
| 47 |
-
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
-
|
| 56 |
-
-
|
| 57 |
-
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
-
|
| 86 |
-
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
-
|
| 94 |
-
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
-
|
| 108 |
-
-
|
| 109 |
-
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
```bash
|
| 130 |
-
|
| 131 |
-
```
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
-
|
| 136 |
-
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
library_name: openpeerllm
|
| 5 |
+
tags:
|
| 6 |
+
- distributed-training
|
| 7 |
+
- cloud-computing
|
| 8 |
+
- language-model
|
| 9 |
+
- grid-computing
|
| 10 |
+
- openpeerllm
|
| 11 |
+
datasets:
|
| 12 |
+
- OpenPeerAI/OpenPeerLLM
|
| 13 |
+
pipeline_tag: distributed-training
|
| 14 |
+
mask: sequential
|
| 15 |
+
|
| 16 |
+
# Model Card: Cloud Agents for OpenPeerLLM
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
|
| 20 |
+
- **Model Type:** Distributed Training System for Language Models
|
| 21 |
+
- **Primary Purpose:** Training Large Language Models in a distributed environment
|
| 22 |
+
- **Framework:** PyTorch with Ray
|
| 23 |
+
- **Target Model:** [OpenPeerLLM](https://huggingface.co/OpenPeerAI/OpenPeerLLM)
|
| 24 |
+
- **License:** MIT
|
| 25 |
+
|
| 26 |
+
## Intended Use
|
| 27 |
+
|
| 28 |
+
### Primary Use
|
| 29 |
+
|
| 30 |
+
- Distributed training of large language models
|
| 31 |
+
- Grid computing/distributed computing-based learning for tensors
|
| 32 |
+
- Horizontal scaling of model training infrastructure
|
| 33 |
+
|
| 34 |
+
### Out-of-Scope Uses
|
| 35 |
+
|
| 36 |
+
- Production deployment of models
|
| 37 |
+
- Single-machine training
|
| 38 |
+
- Real-time inference
|
| 39 |
+
|
| 40 |
+
## System Architecture
|
| 41 |
+
|
| 42 |
+
### Components
|
| 43 |
+
|
| 44 |
+
1. **Distributed Agents**
|
| 45 |
+
- Lightweight worker nodes for distributed computing
|
| 46 |
+
- Automatic scaling based on workload
|
| 47 |
+
- Built-in fault tolerance and recovery
|
| 48 |
+
|
| 49 |
+
2. **CouchDB Coordination Layer**
|
| 50 |
+
- Job distribution and management
|
| 51 |
+
- State synchronization
|
| 52 |
+
- Agent discovery and registration
|
| 53 |
+
|
| 54 |
+
3. **Tensor Operations**
|
| 55 |
+
- Distributed gradient computation
|
| 56 |
+
- Efficient parameter updates
|
| 57 |
+
- Gradient averaging and clipping
|
| 58 |
+
|
| 59 |
+
4. **Training Orchestration**
|
| 60 |
+
- Automated model checkpoint management
|
| 61 |
+
- Dynamic load balancing
|
| 62 |
+
- Progress monitoring and reporting
|
| 63 |
+
|
| 64 |
+
## Performance
|
| 65 |
+
|
| 66 |
+
### Scaling Characteristics
|
| 67 |
+
|
| 68 |
+
- **Minimum Agents:** 2
|
| 69 |
+
- **Maximum Agents:** 10 (configurable)
|
| 70 |
+
- **Scale-up Threshold:** 80% utilization
|
| 71 |
+
- **Scale-down Threshold:** 30% utilization
|
| 72 |
+
- **Auto-scaling:** Yes, based on workload
|
| 73 |
+
|
| 74 |
+
### Resource Requirements
|
| 75 |
+
|
| 76 |
+
- **Per Agent:**
|
| 77 |
+
- CPU: 1 core minimum
|
| 78 |
+
- GPU: Optional, supports fractional GPU allocation
|
| 79 |
+
- Memory: Varies based on model size
|
| 80 |
+
- Network: Reliable connection to CouchDB and other agents
|
| 81 |
+
|
| 82 |
+
## Limitations
|
| 83 |
+
|
| 84 |
+
1. **Network Dependency**
|
| 85 |
+
- Requires stable network connectivity between agents
|
| 86 |
+
- CouchDB must be accessible to all agents
|
| 87 |
+
|
| 88 |
+
2. **Scaling Limits**
|
| 89 |
+
- Upper bound on number of concurrent agents
|
| 90 |
+
- Network latency can impact synchronization
|
| 91 |
+
|
| 92 |
+
3. **Resource Management**
|
| 93 |
+
- Requires careful monitoring of resource utilization
|
| 94 |
+
- GPU memory management crucial for large models
|
| 95 |
+
|
| 96 |
+
## Training Details
|
| 97 |
+
|
| 98 |
+
### Training Data
|
| 99 |
+
|
| 100 |
+
- Uses the same training data as OpenPeerLLM
|
| 101 |
+
- Supports distributed batch processing
|
| 102 |
+
- Configurable gradient accumulation steps
|
| 103 |
+
|
| 104 |
+
### Training Procedure
|
| 105 |
+
|
| 106 |
+
1. **Initialization**
|
| 107 |
+
- Model weights loaded from HuggingFace hub
|
| 108 |
+
- Agents register with coordinator
|
| 109 |
+
- Initial state distributed to all agents
|
| 110 |
+
|
| 111 |
+
2. **Training Loop**
|
| 112 |
+
- Distributed gradient computation
|
| 113 |
+
- Synchronized parameter updates
|
| 114 |
+
- Regular checkpointing
|
| 115 |
+
- Automatic agent scaling
|
| 116 |
+
|
| 117 |
+
### Hyperparameters
|
| 118 |
+
|
| 119 |
+
Configurable through environment variables:
|
| 120 |
+
- Batch size
|
| 121 |
+
- Gradient accumulation steps
|
| 122 |
+
- Number of epochs
|
| 123 |
+
- Learning rate
|
| 124 |
+
- Scaling thresholds
|
| 125 |
+
|
| 126 |
+
## Getting Started
|
| 127 |
+
|
| 128 |
+
1. **Installation**
|
| 129 |
+
```bash
|
| 130 |
+
pip install -r requirements.txt
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
2. **Configuration**
|
| 134 |
+
- Copy `.env.example` to `.env`
|
| 135 |
+
- Configure CouchDB connection
|
| 136 |
+
- Set desired training parameters
|
| 137 |
+
|
| 138 |
+
3. **Launch Training**
|
| 139 |
+
```bash
|
| 140 |
+
python -m cloud_agents.cli train --num-epochs 3 --steps-per-epoch 100
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
4. **Monitor Progress**
|
| 144 |
+
```bash
|
| 145 |
+
python -m cloud_agents.cli status
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
## Ethical Considerations
|
| 149 |
+
|
| 150 |
+
- Resource efficiency through intelligent scaling
|
| 151 |
+
- Environmental impact minimization via workload-based scaling
|
| 152 |
+
- Distributed approach reduces single-point-of-failure risks
|
| 153 |
+
|
| 154 |
+
## Maintenance
|
| 155 |
+
|
| 156 |
+
This system is maintained as an open-source project. Users are encouraged to:
|
| 157 |
+
- Report issues and bugs
|
| 158 |
+
- Suggest improvements
|
| 159 |
+
- Contribute to the codebase
|
| 160 |
+
- Share performance metrics and optimization strategies
|
| 161 |
+
|
| 162 |
+
## Citation
|
| 163 |
+
|
| 164 |
+
If you use this system in your research, please cite:
|
| 165 |
+
|
| 166 |
+
```bibtex
|
| 167 |
+
@software{cloud_agents_2025,
|
| 168 |
+
title = {Cloud Agents: Distributed Training System for OpenPeerLLM},
|
| 169 |
+
year = {2025},
|
| 170 |
+
author = {Andrew Magdy Kamal},
|
| 171 |
+
url = {hhttps://huggingface.co/OpenPeerAI/Cloud-Agents},
|
| 172 |
+
note = {Distributed computing framework for training large language models}
|
| 173 |
+
}
|
| 174 |
```
|