--- license: apache-2.0 datasets: - HuggingFaceFW/finewiki metrics: - accuracy base_model: - PaddlePaddle/PaddleOCR-VL new_version: OpenTrouter/Trouter-Terminus-20b pipeline_tag: text-generation library_name: adapter-transformers tags: - agent - code --- # Trouter-20B
![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg) ![Model Size](https://img.shields.io/badge/Parameters-20B-green.svg) ![Python](https://img.shields.io/badge/Python-3.8%2B-blue.svg) ![PyTorch](https://img.shields.io/badge/PyTorch-2.0%2B-orange.svg) *A powerful 20 billion parameter language model for advanced natural language processing* [🤗 Model Card](https://huggingface.co/Trouter-Library/Trouter-20B) | [📖 Documentation](./USAGE_GUIDE.md)
--- ## 📋 Table of Contents - [Overview](#overview) - [Key Features](#key-features) - [Quick Start](#quick-start) - [Model Details](#model-details) - [Performance](#performance) - [Use Cases](#use-cases) - [System Requirements](#system-requirements) - [Training Details](#training-details) - [Limitations & Bias](#limitations--bias) - [License](#license) - [Citation](#citation) - [Acknowledgments](#acknowledgments) ## 🎯 Overview Trouter-20B is a state-of-the-art decoder-only transformer language model with 20 billion parameters. Designed for versatility and performance, it excels at a wide range of natural language understanding and generation tasks including reasoning, question answering, creative writing, code generation, and conversational AI. ## ✨ Key Features - **20B Parameters**: Optimal balance between performance and computational efficiency - **4K Context Length**: Process and generate longer sequences with 4096 token context window - **Apache 2.0 License**: Fully open for commercial and research use - **Optimized Architecture**: Efficient attention mechanisms with GQA (Grouped Query Attention) - **Multi-lingual Capable**: Strong performance on English with support for multiple languages - **Quantization Ready**: Compatible with 8-bit and 4-bit quantization for reduced memory footprint - **Chat Optimized**: Built-in chat template for conversational applications ## 🚀 Quick Start ### Installation ```bash pip install transformers>=4.38.0 torch>=2.0.0 accelerate bitsandbytes ``` ### Basic Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and tokenizer model_id = "Trouter-Library/Trouter-20B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto" ) # Generate text prompt = "Explain the concept of neural networks:" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Memory-Efficient Loading (4-bit) ```python from transformers import BitsAndBytesConfig # Configure 4-bit quantization bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto" ) ``` For more detailed usage examples, see the [Usage Guide](./USAGE_GUIDE.md). ## 📊 Model Details | Specification | Value | |--------------|-------| | **Parameters** | 20 billion | | **Architecture** | Decoder-only Transformer | | **Layers** | 48 | | **Hidden Size** | 5120 | | **Attention Heads** | 40 (8 KV heads with GQA) | | **Context Length** | 4096 tokens | | **Vocabulary Size** | 32,000 tokens | | **Activation** | SiLU (Swish) | | **Positional Encoding** | RoPE (Rotary Position Embedding) | | **Normalization** | RMSNorm | | **Precision** | BFloat16 | ## 📈 Performance ### Benchmark Results | Benchmark | Score | Notes | |-----------|-------|-------| | MMLU (5-shot) | TBD | Multitask Language Understanding | | HellaSwag | TBD | Commonsense Reasoning | | TruthfulQA | TBD | Truthfulness & Accuracy | | HumanEval | TBD | Code Generation | | GSM8K | TBD | Mathematical Reasoning | | BBH | TBD | Big Bench Hard | *Benchmarks to be updated after comprehensive evaluation* ### Inference Speed | Configuration | Tokens/Second | Memory Usage | |--------------|---------------|--------------| | BF16 (A100 80GB) | ~XX tokens/s | ~40GB | | 8-bit (A100 40GB) | ~XX tokens/s | ~20GB | | 4-bit (RTX 4090) | ~XX tokens/s | ~10GB | ## 💡 Use Cases ### ✅ Recommended Uses - **Text Generation**: Articles, stories, creative writing - **Question Answering**: Information retrieval and explanation - **Code Assistance**: Code completion, debugging, explanation - **Summarization**: Document and conversation summarization - **Translation**: Multi-language translation tasks - **Dialogue Systems**: Chatbots and conversational AI - **Content Analysis**: Sentiment analysis, classification - **Educational Tools**: Tutoring and learning assistance ### ⚠️ Limitations - May generate incorrect or nonsensical information (hallucinations) - Not suitable for high-stakes decision making without human oversight - Performance may vary on specialized or domain-specific tasks - Requires careful prompt engineering for optimal results - May reflect biases present in training data ### ❌ Out of Scope - Real-time medical diagnosis or treatment recommendations - Legal advice or binding interpretations - Financial investment decisions - Safety-critical systems without human verification - Generating harmful, illegal, or unethical content ## 💻 System Requirements ### Minimum Requirements - **GPU**: 24GB VRAM (with 4-bit quantization) - **RAM**: 32GB system memory - **Storage**: 50GB free space - **CUDA**: 11.8 or higher ### Recommended Specifications - **GPU**: A100 (40GB/80GB) or H100 - **RAM**: 64GB+ system memory - **Storage**: 100GB+ SSD - **Multi-GPU**: Supported via `device_map="auto"` ## 🏋️ Training Details ### Training Data Trouter-20B was trained on a diverse corpus of high-quality text data including: - Web documents and articles - Books and academic papers - Code repositories - Conversational data - Multilingual text **Total Training Tokens**: [Specify total tokens] **Data Mix**: [Provide breakdown of data sources] **Cutoff Date**: January 2025 ### Training Infrastructure - **Framework**: PyTorch 2.0+ with FSDP - **Hardware**: [Specify GPU cluster details] - **Training Time**: [Specify duration] - **Optimizer**: AdamW - **Learning Rate**: Cosine schedule with warmup - **Batch Size**: [Specify effective batch size] - **Sequence Length**: 4096 tokens ### Training Objective Causal language modeling with next-token prediction using cross-entropy loss. ## ⚖️ Limitations & Bias ### Known Limitations 1. **Hallucinations**: May generate plausible-sounding but incorrect information 2. **Temporal Knowledge**: Training data cutoff is January 2025 3. **Mathematical Reasoning**: May struggle with complex multi-step calculations 4. **Multilingual Performance**: Optimized for English; other languages may have reduced quality 5. **Context Window**: Limited to 4096 tokens ### Bias Considerations Like all large language models, Trouter-20B may exhibit biases including: - Gender, racial, and cultural biases from training data - Western/English-centric perspective - Potential stereotyping in generated content **Mitigation Efforts**: We encourage users to: - Implement appropriate content filtering - Use diverse evaluation datasets - Apply bias detection tools - Provide human oversight for production deployments ## 📜 License Trouter-20B is released under the **Apache 2.0 License**. You are free to: ✅ Use commercially ✅ Modify and distribute ✅ Use privately ✅ Use for patent purposes See [LICENSE](./LICENSE) file for full terms. ## 📝 Citation If you use Trouter-20B in your research or applications, please cite: ```bibtex @software{trouter20b2025, title={Trouter-20B: A 20 Billion Parameter Language Model}, author={Trouter-Library}, year={2025}, month={10}, url={https://huggingface.co/Trouter-Library/Trouter-20B}, version={1.0}, license={Apache-2.0} } ``` ## 🙏 Acknowledgments We thank the open-source community and the following projects that made this work possible: - [Hugging Face Transformers](https://github.com/huggingface/transformers) - [PyTorch](https://pytorch.org/) - [LLaMA](https://ai.meta.com/llama/) architecture inspiration - [EleutherAI](https://www.eleuther.ai/) for evaluation frameworks ---
**Built with ❤️ for the AI community** [⬆ Back to Top](#trouter-20b)