--- license: apache-2.0 library_name: transformers pipeline_tag: image-text-to-text base_model: - mistral-community/pixtral-12b base_model_relation: quantized --- # pixtral-12b-int4-ov * Model creator: [mistral-community](https://huggingface.co/mistral-community) * Original model: [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b) ## Description This is [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT4_ASYM** ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2025.2.0 and higher * Optimum Intel 1.26.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino_tokenizers openvino pip install git+https://github.com/huggingface/optimum-intel.git ``` 2. Run model inference ``` from PIL import Image import requests from optimum.intel.openvino import OVModelForVisualCausalLM from transformers import AutoProcessor, TextStreamer model_id = "OpenVINO/pixtral-12b-int4-ov" processor = AutoProcessor.from_pretrained(model_id) ov_model = OVModelForVisualCausalLM.from_pretrained(model_id, trust_remote_code=True) question = "What is unusual in this picture?" messages = [ {"role": "user", "content": [{"type": "text", "content": question}, {"type": "image"}]}, ] text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11" raw_image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=text, images=[raw_image], return_tensors="pt") streamer = TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True) output = ov_model.generate(**inputs, do_sample=False, max_new_tokens=100, temperature=None, top_p=None, streamer=streamer) ``` ## Limitations Check the original [model card](https://huggingface.co/mistral-community/pixtral-12b) for limitations. ## Legal information The original model is distributed under [apache-2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md) license. More details can be found in [original model card](https://huggingface.co/mistral-community/pixtral-12b). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.