Update README.md
Browse files
README.md
CHANGED
|
@@ -17,3 +17,82 @@ Recent research efforts have been directed toward the development of automated s
|
|
| 17 |
|
| 18 |
<img src="https://github.com/OrKatz7/parler-hate-speech/blob/main/docs/parler_results.jpeg?raw=true">
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
<img src="https://github.com/OrKatz7/parler-hate-speech/blob/main/docs/parler_results.jpeg?raw=true">
|
| 19 |
|
| 20 |
+
```
|
| 21 |
+
!pip install huggingface_hub
|
| 22 |
+
!pip install tokenizers transformers
|
| 23 |
+
!pip install iterative-stratification
|
| 24 |
+
!git clone https://github.com/OrKatz7/parler-hate-speech
|
| 25 |
+
%cd parler-hate-speech/src
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
```
|
| 29 |
+
from huggingface_hub import hf_hub_download
|
| 30 |
+
import torch
|
| 31 |
+
import sys
|
| 32 |
+
from model import CustomModel,MeanPooling
|
| 33 |
+
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 34 |
+
import numpy as np
|
| 35 |
+
class CFG:
|
| 36 |
+
model="microsoft/deberta-v3-base"
|
| 37 |
+
target_cols=['label_mean']
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
```
|
| 41 |
+
name = "OrK7/parler_hate_speech"
|
| 42 |
+
downloaded_model_path = hf_hub_download(repo_id=name, filename="pytorch_model.bin")
|
| 43 |
+
model = torch.load(downloaded_model_path)
|
| 44 |
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
```
|
| 48 |
+
def prepare_input(text):
|
| 49 |
+
inputs = tokenizer.encode_plus(
|
| 50 |
+
text,
|
| 51 |
+
return_tensors=None,
|
| 52 |
+
add_special_tokens=True,
|
| 53 |
+
max_length=512,
|
| 54 |
+
pad_to_max_length=True,
|
| 55 |
+
truncation=True
|
| 56 |
+
)
|
| 57 |
+
for k, v in inputs.items():
|
| 58 |
+
inputs[k] = torch.tensor(np.array(v).reshape(1,-1), dtype=torch.long)
|
| 59 |
+
return inputs
|
| 60 |
+
|
| 61 |
+
def collate(inputs):
|
| 62 |
+
mask_len = int(inputs["attention_mask"].sum(axis=1).max())
|
| 63 |
+
for k, v in inputs.items():
|
| 64 |
+
inputs[k] = inputs[k][:,:mask_len]
|
| 65 |
+
return inputs
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
```
|
| 69 |
+
from transformers import Pipeline
|
| 70 |
+
class HatePipeline(Pipeline):
|
| 71 |
+
def _sanitize_parameters(self, **kwargs):
|
| 72 |
+
preprocess_kwargs = {}
|
| 73 |
+
if "maybe_arg" in kwargs:
|
| 74 |
+
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
|
| 75 |
+
return preprocess_kwargs, {}, {}
|
| 76 |
+
|
| 77 |
+
def preprocess(self, inputs):
|
| 78 |
+
out = prepare_input(inputs)
|
| 79 |
+
return collate(out)
|
| 80 |
+
|
| 81 |
+
def _forward(self, model_inputs):
|
| 82 |
+
outputs = self.model(model_inputs)
|
| 83 |
+
return outputs
|
| 84 |
+
|
| 85 |
+
def postprocess(self, model_outputs):
|
| 86 |
+
return np.array(model_outputs[0,0].numpy()).clip(0,1)*4+1
|
| 87 |
+
```
|
| 88 |
+
```
|
| 89 |
+
pipe = HatePipeline(model=model)
|
| 90 |
+
pipe("I Love you #")
|
| 91 |
+
```
|
| 92 |
+
results: 1.0
|
| 93 |
+
|
| 94 |
+
```
|
| 95 |
+
pipe("I Hate #$%#$%Jewish%$#@%^^@#")
|
| 96 |
+
```
|
| 97 |
+
results: 4.155200004577637
|
| 98 |
+
|