--- datasets: - PAPOGalaxy/PAPO_train license: mit pipeline_tag: image-text-to-text library_name: transformers --- # PAPO: Perception-Aware Policy Optimization for Multimodal Reasoning This is the official model released for our paper [Perception-Aware Policy Optimization for Multimodal Reasoning](https://huggingface.co/papers/2507.06448). **Project Page:** [https://mikewangwzhl.github.io/PAPO/](https://mikewangwzhl.github.io/PAPO/) **Code:** [https://github.com/mikewangwzhl/PAPO](https://github.com/mikewangwzhl/PAPO) ## Model Version PAPO (γ=0.01) ## Usage You can use this model with the Hugging Face `transformers` library. ```python from transformers import AutoProcessor, AutoModelForCausalLM from PIL import Image import requests # Replace "PAPOGalaxy/PAPO" with the actual model ID if different # For example, if it's PAPOGalaxy/PAPO-7B or PAPOGalaxy/PAPO-3B model_id = "PAPOGalaxy/PAPO" processor = AutoProcessor.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") # Example image (replace with your own image path or URL) image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/bee.JPG" image = Image.open(requests.get(image_url, stream=True).raw) # Example prompt prompt = "What is in the image?" # Prepare inputs following the model's chat template messages = [ {"role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": prompt} ]} ] text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) inputs = processor(text=text, images=image, return_tensors="pt").to(model.device) # Generate response generated_ids = model.generate(**inputs, max_new_tokens=100) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) ```