--- library_name: transformers base_model: google-bert/bert-base-chinese tags: - generated_from_trainer model-index: - name: bert_crf-ner-weibo results: [] --- # bert_crf-ner-weibo This model is a fine-tuned version of [google-bert/bert-base-chinese](https://huggingface.co/google-bert/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2287 - eval_precision: 0.6344 - eval_recall: 0.7584 - eval_f1: 0.6909 - eval_accuracy: 0.9678 - eval_runtime: 0.5124 - eval_samples_per_second: 524.958 - eval_steps_per_second: 9.758 - epoch: 115.0 - step: 2530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.46.1 - Pytorch 1.13.1+cu117 - Datasets 3.1.0 - Tokenizers 0.20.2