Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,111 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
---
|
| 7 |
+
## Introduction
|
| 8 |
+
|
| 9 |
+
SmallThinker is a family of **on-device native** Mixture-of-Experts (MoE) language models specially designed for local deployment,
|
| 10 |
+
co-developed by the **IPADS and School of AI at Shanghai Jiao Tong University** and **Zenergize AI**.
|
| 11 |
+
Designed from the ground up for resource-constrained environments,
|
| 12 |
+
SmallThinker brings powerful, private, and low-latency AI directly to your personal devices,
|
| 13 |
+
without relying on the cloud.
|
| 14 |
+
|
| 15 |
+
## Performance
|
| 16 |
+
| Model | MMLU | GPQA-diamond | GSM8K | MATH-500 | IFEVAL | LIVEBENCH | HUMANEVAL | Average |
|
| 17 |
+
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
| 18 |
+
| **SmallThinker-4BA0.6B-Instruct** | **66.11** | **31.31** | 80.02 | <u>60.60</u> | 69.69 | **42.20** | **82.32** | **61.75** |
|
| 19 |
+
| Qwen3-0.6B | 43.31 | 26.77 | 62.85 | 45.6 | 58.41 | 23.1 | 31.71 | 41.67 |
|
| 20 |
+
| Qwen3-1.7B | <u>64.19</u> | <u>27.78</u> | <u>81.88</u> | **63.6** | 69.50 | <u>35.60</u> | 61.59 | <u>57.73</u> |
|
| 21 |
+
| Gemma3nE2b-it | 63.04 | 20.2 | **82.34** | 58.6 | **73.2** | 27.90 | <u>64.63</u> | 55.70 |
|
| 22 |
+
| Llama-3.2-3B-Instruct | 64.15 | 24.24 | 75.51 | 40 | <u>71.16</u> | 15.30 | 55.49 | 49.41 |
|
| 23 |
+
| Llama-3.2-1B-Instruct | 45.66 | 22.73 | 1.67 | 14.4 | 48.06 | 13.50 | 37.20 | 26.17 |
|
| 24 |
+
|
| 25 |
+
For the MMLU evaluation, we use a 0-shot CoT setting.
|
| 26 |
+
|
| 27 |
+
All models are evaluated in non-thinking mode.
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
## Speed
|
| 31 |
+
| Model | Memory(GiB) | i9 14900 | 1+13 8gen4 | rk3588 (16G) | rk3576 | Raspberry PI 5 | RDK X5 | rk3566 |
|
| 32 |
+
|-----------------------------------------------|---------------------|----------|------------|--------------|--------|----------------|--------|--------|
|
| 33 |
+
| SmallThinker 4B+sparse ffn +sparse lm_head | 2.24 | 108.17 | 78.99 | 39.76 | 15.10 | 28.77 | 7.23 | 6.33 |
|
| 34 |
+
| SmallThinker 4B+sparse ffn +sparse lm_head+limited memory | limit 1G| 29.99 | 20.91 | 15.04 | 2.60 | 0.75 | 0.67 | 0.74 |
|
| 35 |
+
| Qwen3 0.6B | 0.6 | 148.56 | 94.91 | 45.93 | 15.29 | 27.44 | 13.32 | 9.76 |
|
| 36 |
+
| Qwen3 1.7B | 1.3 | 62.24 | 41.00 | 20.29 | 6.09 | 11.08 | 6.35 | 4.15 |
|
| 37 |
+
| Qwen3 1.7B+limited memory | limit 1G | 2.66 | 1.09 | 1.00 | 0.47 | - | - | 0.11 |
|
| 38 |
+
| Gemma3n E2B | 1G, theoretically | 36.88 | 27.06 | 12.50 | 3.80 | 6.66 | 3.46 | 2.45 |
|
| 39 |
+
|
| 40 |
+
Note: i9 14900, 1+13 8ge4 use 4 threads, others use the number of threads that can achieve the maximum speed. All models here have been quantized to q4_0.
|
| 41 |
+
|
| 42 |
+
You can deploy SmallThinker with offloading support using [PowerInfer](https://github.com/SJTU-IPADS/PowerInfer/tree/main/smallthinker)
|
| 43 |
+
|
| 44 |
+
## Model Card
|
| 45 |
+
|
| 46 |
+
<div align="center">
|
| 47 |
+
|
| 48 |
+
| **Architecture** | Mixture-of-Experts (MoE) |
|
| 49 |
+
|:---:|:---:|
|
| 50 |
+
| **Total Parameters** | 4B |
|
| 51 |
+
| **Activated Parameters** | 0.6B |
|
| 52 |
+
| **Number of Layers** | 32 |
|
| 53 |
+
| **Attention Hidden Dimension** | 1536 |
|
| 54 |
+
| **MoE Hidden Dimension** (per Expert) | 768 |
|
| 55 |
+
| **Number of Attention Heads** | 12 |
|
| 56 |
+
| **Number of Experts** | 32 |
|
| 57 |
+
| **Selected Experts per Token** | 4 |
|
| 58 |
+
| **Vocabulary Size** | 151,936 |
|
| 59 |
+
| **Context Length** | 32K |
|
| 60 |
+
| **Attention Mechanism** | GQA |
|
| 61 |
+
| **Activation Function** | ReGLU |
|
| 62 |
+
</div>
|
| 63 |
+
|
| 64 |
+
## How to Run
|
| 65 |
+
|
| 66 |
+
### Transformers
|
| 67 |
+
|
| 68 |
+
The latest version of `transformers` is recommended or `transformers>=4.53.3` is required.
|
| 69 |
+
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 73 |
+
import torch
|
| 74 |
+
|
| 75 |
+
path = "PowerInfer/SmallThinker-4BA0.6B-Instruct"
|
| 76 |
+
device = "cuda"
|
| 77 |
+
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
| 79 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
| 80 |
+
|
| 81 |
+
messages = [
|
| 82 |
+
{"role": "user", "content": "Give me a short introduction to large language model."},
|
| 83 |
+
]
|
| 84 |
+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
|
| 85 |
+
|
| 86 |
+
model_outputs = model.generate(
|
| 87 |
+
model_inputs,
|
| 88 |
+
do_sample=True,
|
| 89 |
+
max_new_tokens=1024
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
output_token_ids = [
|
| 93 |
+
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
|
| 97 |
+
print(responses)
|
| 98 |
+
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
### ModelScope
|
| 102 |
+
|
| 103 |
+
`ModelScope` adopts Python API similar to (though not entirely identical to) `Transformers`. For basic usage, simply modify the first line of the above code as follows:
|
| 104 |
+
|
| 105 |
+
```python
|
| 106 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
| 107 |
+
```
|
| 108 |
+
## Statement
|
| 109 |
+
- Due to the constraints of its model size and the limitations of its training data, its responses may contain factual inaccuracies, biases, or outdated information.
|
| 110 |
+
- Users bear full responsibility for independently evaluating and verifying the accuracy and appropriateness of all generated content.
|
| 111 |
+
- SmallThinker does not possess genuine comprehension or consciousness and cannot express personal opinions or value judgments.
|