PrabalAryal's picture
Add new SentenceTransformer model
3734f29 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:68828
  - loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: Men is de toegangssleutels verloren
    sentences:
      - De centrale verwarming
      - niet dringend
      - Weg
  - source_sentence: De bovenste constructie
    sentences:
      - Voldoende warm water in de hele woning
      - daklekkage
      - lek in kraan
  - source_sentence: De box in het souterrain
    sentences:
      - Vloer
      - lift niet
      - Nood uitgang
  - source_sentence: balkon
    sentences:
      - de brievenbus
      - uitgang garage dicht
      - afvoer de douche
  - source_sentence: De deur naar de kelderboxen is stuk
    sentences:
      - deur met dranger
      - De beugel om de plek vrij te houden
      - kelderboxen deur
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.982086820083682
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.733125627040863
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9821498371335505
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.733125627040863
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9787068293949623
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9856171548117155
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9972864020390366
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.964197674565882
            name: Cosine Mcc

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("PrabalAryal/Sentence_Transformer_v0.0.4")
# Run inference
sentences = [
    'De deur naar de kelderboxen is stuk',
    'kelderboxen deur',
    'deur met dranger',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9821
cosine_accuracy_threshold 0.7331
cosine_f1 0.9821
cosine_f1_threshold 0.7331
cosine_precision 0.9787
cosine_recall 0.9856
cosine_ap 0.9973
cosine_mcc 0.9642

Training Details

Training Dataset

Unnamed Dataset

  • Size: 68,828 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 7.03 tokens
    • max: 21 tokens
    • min: 3 tokens
    • mean: 6.41 tokens
    • max: 18 tokens
    • min: 0.0
    • mean: 0.49
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    De sluiting van de toegangspoort is stuk slot defect 1.0
    Woning trapafgang 0.0
    De sleutels zijn kwijt Nie 0.0
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 10
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss cosine_ap
0.1998 215 - 0.7638
0.3996 430 - 0.8723
0.4647 500 4.4585 -
0.5994 645 - 0.9176
0.7993 860 - 0.9475
0.9294 1000 3.6015 -
0.9991 1075 - 0.9595
1.0 1076 - 0.9593
1.1989 1290 - 0.9705
1.3941 1500 3.3729 -
1.3987 1505 - 0.9793
1.5985 1720 - 0.9818
1.7983 1935 - 0.9854
1.8587 2000 3.2631 -
1.9981 2150 - 0.9866
2.0 2152 - 0.9866
2.1980 2365 - 0.9890
2.3234 2500 3.1295 -
2.3978 2580 - 0.9884
2.5976 2795 - 0.9916
2.7881 3000 3.0907 -
2.7974 3010 - 0.9916
2.9972 3225 - 0.9922
3.0 3228 - 0.9922
3.1970 3440 - 0.9928
3.2528 3500 3.0105 -
3.3968 3655 - 0.9932
3.5967 3870 - 0.9937
3.7175 4000 2.977 -
3.7965 4085 - 0.9939
3.9963 4300 - 0.9944
4.0 4304 - 0.9945
4.1822 4500 2.9488 -
4.1961 4515 - 0.9947
4.3959 4730 - 0.9950
4.5957 4945 - 0.9952
4.6468 5000 2.914 -
4.7955 5160 - 0.9954
4.9954 5375 - 0.9956
5.0 5380 - 0.9956
5.1115 5500 2.8927 -
5.1952 5590 - 0.9960
5.3950 5805 - 0.9959
5.5762 6000 2.8505 -
5.5948 6020 - 0.9963
5.7946 6235 - 0.9961
5.9944 6450 - 0.9962
6.0 6456 - 0.9962
6.0409 6500 2.8462 -
6.1942 6665 - 0.9963
6.3941 6880 - 0.9965
6.5056 7000 2.8024 -
6.5939 7095 - 0.9967
6.7937 7310 - 0.9969
6.9703 7500 2.8184 -
6.9935 7525 - 0.9968
7.0 7532 - 0.9967
7.1933 7740 - 0.9967
7.3931 7955 - 0.9967
7.4349 8000 2.7761 -
7.5929 8170 - 0.9968
7.7928 8385 - 0.9969
7.8996 8500 2.7736 -
7.9926 8600 - 0.9970
8.0 8608 - 0.9971
8.1924 8815 - 0.9972
8.3643 9000 2.7627 -
8.3922 9030 - 0.9970
8.5920 9245 - 0.9972
8.7918 9460 - 0.9972
8.8290 9500 2.7604 -
8.9916 9675 - 0.9972
9.0 9684 - 0.9972
9.1914 9890 - 0.9971
9.2937 10000 2.7467 -
9.3913 10105 - 0.9972
9.5911 10320 - 0.9973
9.7584 10500 2.7441 -
9.7909 10535 - 0.9973

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.53.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.9.0
  • Datasets: 4.4.1
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}